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1. Introduction. Technical liquid metal systems accompanied by a ther-
mal transfer of energy such as reactor systems, metallurgical processes, metal
refinement, casting etc. require a forced convection of the fluid. The elevated
temperatures and more often the environmental conditions as e.g. in a nuclear
environment pumping principles are required, in which rotating parts are absent.
Additionally, in many applications a controlled atmosphere is indispensable, in
order to ensure the structural integrity of the duct walls. An interesting option
to overcome the sealing problem of a mechanical pump towards the ambient is
offered by induction systems. Although their efficiency is compared to the one of
turbo machines quite low they service several advantages, which are attractive to
the specific requirements in liquid metal applications such as:

• low maintenance costs due to absence of sealings, bearings and moving parts;
• low degradation rate of the structural material;
• simple replacement of the inductor without cut of the piping system;
• fine regulation of flow rate by different inductor connections;
• change of pump characteristics without change of the mechanical set-up.

Within article general design requirements of electro-magnetic pumps (EMPS)
are elaborated. The design of two annular linear induction pumps operated with
sodium and lead bismuth are presented and the calculated pump characteristics
and experimentally obtained data are compared. In this context physical effects
leading to deviations between the model and the real data are addressed. Finally,
the main results are summarized.

2. Design equations for linear induction pumps. The operation
principle of magneto-hydrodynamic induction pumps is similar to that of an asyn-
chronous motor. In order that the magnetic field can induce an electric current
within the fluid it must change in time. Since the resulting Lorentz-force should
have a defined direction a travelling magnetic field has to be applied to the fluid.
A three phase AC motor utilizes a rotating magnetic field, which is excited by an
electric current in the stator. The inductor of an electro-magnetic pump is also
composed like a stator of an AC motor, if one considers the stator to be cut and
expanded into a plane. In an AC motor the magnetic field, which is generated by
the electric current and amplified by the ferromagnetic iron sheets, travels along
the z-axis in an idealized imagination as a sinusoidal wave. It ‘runs’ along this
axis with the so-called synchronous velocity vB . In reality, however, the magnetic
field distribution ‘runs’, because the stator or inductor is fed by an AC current.
The three distributions given by the three phase current merge and create a quasi-
sinusoidal shape of the magnetic field distribution. The synchronous velocity vB

is calculated as the product of the wave length λ of the magnetic induction and
the AC supply frequency f . The wavelength λg defined as the distance between
two adjacent peaks of the magnetic induction is an essential geometric parameter
of the inductor and can be conceived as the actual distance between the north and
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the south poles of the magnetic field. This travelling magnetic field induces an
electric current j within the fluid, which is also of quasi sinusoidal shape and also
travelling. The interaction of the magnetic induction B and the induced current j
results in a Lorentz force, which pulls the fluid in direction of the induction. The
fluid velocity vf is always smaller than that of the magnetic field vB. If they would
be identical no induction takes place and thus no electric current and force estab-
lishes. The same holds for asynchronous motors, in which the angular velocity of
the rotor is always a little smaller than that of the rotating stator field. (If the
fluid velocity would be larger than the speed of the field the device would act as
a generator.) The difference between both velocities additionally divided by the
synchronous velocity vB is called the slip s. with s = (vB − vf )/vB.

2.1. Ideal linear induction pump. Consider an element of the dimensions
dx, dy and dz as shown in fig. 1, where the current density is jy and the induction is
Hx. Equating forces acting on such an element in z-direction, we obtain a balance
between Lorentz (jy Hx) and pressure forces, which is given by eq. 1a. The total
pressure difference pz developed in a pump of the effective length L is then given
by eq. 1b.; and if the pressure is uniform across the tube in the x- and y the gross
output power P0 is given by eq. 1c.

∂p

∂z
= jyHx, pz =

z=L∫
z=0

jyHx dz , P0 = pz · (v · a · b) (1)

where a and b are the duct dimensions according to fig. 1, v the mean velocity
and p the pressure. The ohmic loss POhm in the fluid, again assuming uniformity,
is

POhm =
(a · b)
σ

z=L∫
z=0

j2y dz, (2)

where σ is the specific electric conductivity of the fluid in A/(Vm). These expres-
sions are basic to all forms of EMPs. Other losses are the hydraulic friction loss
Phydr, the winding loss PW , losses in the tube walls Ptube, eddy current losses at
in- outlet, core losses etc.. In addition, there can be another substantial losses.

Fig. 1: Sketch of a linear induction pump and coordinate system.
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The design equations for the ideal forms of annular inductions pumps will be
considered together by assuming the pump to be flat and of infinite width in y-
direction a/b <<1. A strip of finite width bof this infinite extent corresponds to the
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mean circumference dm of the annular gap in the ALIP. Only the x−component
of H and the y−component of the current j will be assumed here to exist. The
relation between the current density in the fluid jf , in the tube walls jt the field
H , the core flux Φ per unit length, the magnetizing ampere-turns ∂NIm/∂z and
the induced voltage per turn φi/N can be derived. Since flux lines are continuous
one can write eq. 3a and Faradays law yields eq. 3b.

ΦZ − Φ0 =

z∫
0

b H dz or H =
1
b

∂Φ
∂z

,
108b

σ
jf = −dΦ

dt
= −

(
∂Φ
∂t

+ v
∂Φ
∂z

)
(3)

The electric current density in the tube walls jt is derived from jf by replacing σ
with σt and setting v = 0. Applying Amperes law to the circuit of width dz one
obtains equation 4

∂N Im
∂z

= − 10 a
4 π

∂H

∂z
= − 10 a

4 π b
∂2Φ
∂z2

. (4)

The voltage per turn induced φi in the winding is given by eq. 5a and if the flux
is assumed to be of the form Φ = Φ0 cos(ω t − ψ), as in the induction motor,
where ψ=2πz/λ, then one obtains eq.5b. Here, HP is the peak induction.

φi

N
=

1
108

∂Φ
∂t

; H = HP sin (ω t− ψ) with HP =
(

2π
λ b

)
Φ (5)

Similarly using equations 3-5 expressions for jf , jt ∂NIm/∂z and φi/N can be
derived.

jf = σ s vB

108 HP sin (ω t− ψ) ; ∂NIm

∂z = 5 a
λ HP cos (ω t− ψ) ;

jt = σt vB

108 HP sin (ω t− ψ) ; φi

N = vB b
108 HP sin (ω t− ψ)

(6)

If these are substituted into eq. 1 and 2 expressions can be deduced for the pump
pressure p, the gross power output P0, and the ohmic losses POhm in the fluid and
the tube wall Ptube. For P0 and POhm the results are:

P0 = Pλ s (1 − s) and POhm = Pλ s
2 where Pλ =

v2
B

2 · 1016
a b σ λH2

p . (7)

An immediate result of the calculation is the ideal efficiency ηi, which is defined
by ηi = P0/(P0 + POhm)=(1 − s). The equations of the ideal case are of limited
validity and in fact only apply to the mid-section of a linear induction pump.

2.2. End effects in the linear induction pump. It was assumed tacitly that
the flux Φ is of the form Φ0 cos(ωt−ψ) over the length L of the pump, 0< z < L,
and the fact that it is zero everywhere outside these limits is ignored. If the effect
of the discontinuities of the ends are now considered it is evident from equations
3a and 4 that infinities are produced in H and ∂NIm/∂z which are not possible
to realize in practice. Therefore, assuming the other limiting condition that the
magnetizing current distribution ∂NIm/∂z is of cos(ωt − ψ) form over the length
of the pump and is zero outside. For consistency say

∂NIm
∂z

=
5 d
λ
HP cos (ω t− ψ) . (8)

The field and flux can be obtained by integrating twice according to eqs. 3a and 5.
If the boundary conditions are inserted, namely Φ0 = Φ2nπ=0, then one obtains

H = HP sin (ω t− ψ) ; Φ = Φ0 [cos (ω t− ψ) − cos (ω t)] . (9)
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It will be seen that H and ∂NIm/∂z are as before but Φ is different, being supple-
mented by the pulsating term cos(ω t). A repetition of the calculation of power
output P0, and ohmic losses POhm and efficiency ηi yields eqs. 10a-c:

P0 = Pλ s (1 − s) ; POhm = Pλ

(
1 + s2

)
;

ηi = (1 − s) ·
(

s
1+s

)
again with Pλ = v2

B

2·1016 a b σ λH
2
p .

(10)

Comparing eqs. 7 with 10 shows that the effect of the pulsating component of
the flux is to add a pulsating component of the current in the liquid metal, which
performs no useful work but increases the ohmic losses by a factor (1+s2)/s2 and
lowers the efficiency by a factor s/(1+s). For example, at a slip of 50%, where
the maximum power can be achieved, the ideal efficiency is lowered from 50% to
16.7%. It is evident that these effects are much too large to be tolerated in power
conversion systems. A dramatic optimisation of the pump performance could be
realized if the windings at the in and outlet are graded, in order to get a smoother
magnetic flux distribution and thus smaller leakage currents. A much simpler way
to reduce the end losses is to grade the winding over the end sections and leave
the mid region uniform. This yields a simpler arrangement, see Stieglitz (2003).

2.3. Winding design. The total current in the winding includes the mag-
netizing component ∂NIm/∂z and components which cancel the magnetic effects
of the current in the liquid and the tube walls by transformer action. The liquid
metal current component is ∂NIm/∂z =-jfaand the tube wall current component
is given by –(kt1/s)jfa. Thus, the ideal distribution of winding current is the
vector sum

∂NIT
∂z

=
∂NIM
∂z

+
∂NIf
∂z

(
1 +

kt1

s

)
. (11)

For a three phase winding with m coils per phase and per pole and one coil per
slot the total coil current-turns at the position z are

NIT =
π

3

z+λ/12m∫
z−λ/12m

∂NIT
∂z

dz. (12)

The factor π /3 is inserted to give agreement with the analysis of a 3-phase winding
and would tend to unity as the number of phases is increased. For the mid section
coils equation 12 can be written as eq. 13a., in which kd has the same form as the
winding distribution factor that is kd =(1/2m) sin(30˚/m). The voltage per turn
required to excite the coil is obtained by eq. 13b.

NIT =
λ

6 mkd

(
∂NIT
∂z

)
,

φ

N
=

(
∂Φ
∂t

)
z

+ (NIT )z

(
Z

N2

)
, (13)

where Z is the coil impedance (leakage reactance and resistance) calculated as in
other electrical machines. The eqs. 11, 12 and 13b can be applied when designing
the coils for both mid and end sections. A calculation of the coil Ampere-turns by
the method of eq.12 is unorthodox but is suggested since it works equally to end
and mid section coils.

2.4. Flux penetration in the induction pump. It is often desirable to employ
a large channel width a in a large pump, but it leads to a large value of a/λ, since
λ increases only little as the size of the pump is increased. This is because the
slip s tends to decrease with size, and although the permissible fluid velocity vf

increases, the synchronous velocity vB = vf/(1-s) remains virtually unchanged.
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Thus, if the frequency is constant λ = vB/f is also virtually independent of the
pump size. The use of a large a/λ is liable to create difficulties due to the limited
flux penetration in the gap. So it is necessary to examine these effects.

So far, it has been assumed that the field crosses the gap perpendicularly so
that the Hy− and Hz–components are absent. The assumption that Hy is zero
is reasonable but it is inappropriate to assume Hz is zero; this is equivalent to
ignoring flux penetration effects or, on other words, the reactive impedance to
current flow in the liquid metal. A more accurate picture of the field in the gap
shows Hx increasing as the winding is approached, and Hx also increasing from
zero at the core to an appreciable value on the winding side of the gap. The
field variation within the liquid alters the pressure distribution, making pz low
on the core side and also introducing a component px, due to the interaction of
jy and Hz. This in turn makes the fluid velocity vz vary across the gap and
introduces a vx–component. An exact calculation of these effects is complicated
for a laminar flow and it is impossible for turbulent flows, which appear mostly in
EMPs, because magnetohydrodynamic effects modify the turbulence structure and
thus an isotropic turbulent diffusivity can not be assumed. Nevertheless, useful
results can be obtained assuming the Hz–component of the field to be present
in addition to the Hx–component, the velocity uniform of value vf and the vx–
component to be absent. Assume, therefore, that the liquid velocity vf is constant,
and that the components of H and j exist in the following form:

Hx = H1 (x) exp
[
iω

(
t− z

vB

)]
; Hz = H2 (x) exp

[
iω

(
t− z

vB

)]
; jy = J (x) exp

[
iω

(
t− z

vB

)]
.

(14)
Under these conditions Maxwells first and second eqs. may be written as eqs 15a-c.

∂Hx

∂z
− ∂Hz

∂x
=

4π
10
jy;

108

σ

∂jy
∂z

= -
∂Hx

∂t
- vf

∂Hx

∂z
;
108

σ

∂jy
∂x

= -
∂Hz

∂t
- vf

∂Hz

∂z
.

(15)
Substituting eqs. 14 into 15 and solving for H1 and H2 one obtains

∂2H1
∂x2 = γ2H1 , ∂2H2

∂x2 = γ2H2 ,
∂H1
∂x = 2 π i

λ H2, j = σ s vB

108 H1

with γ = 2 π
λ

√
1 + i h and h = 2

109 σ s λ vB .
(16)

The boundary conditions which must be satisfied are H2 =0 and from 16c, d

dH1

dx
= 0 at x = 0 . (17)

This assumes that the core is of infinite permeability and cannot sustain the field
H2 parallel to its surface. For the second boundary condition many forms are
possible. If the winding current is known, on can write

H2 = H2a and dH1
∂x = 2 π i

λ H2a at x = a ,with H2a =
(

4π
10

)
dNIT

dz . (17b, c)
The latter expression is a reasonable approximation in most cases. If the

supply voltage is known, or more accurately the induced voltage φi which is the
supply voltage less the voltage drop in the winding impedance, then the following
relation holds.

H1 = Ha at x = a where
φi

N
=
vBb i Ha

108
. (18)

A further possibility is to suppose that the mean field across the gap is known

1
a

x=a∫
x=0

H1 dx = Hp , (19)
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using the same symbolHP as before but denoting now the peak value in time of the
mean gap field. Any of the eqs. 17-19 can be employed in solving eqs. 16; all have
relative merits but eq. 19 appears to be most convenient when comparisons with
previous expressions are to be made. This boundary condition will be employed
together with the one of eq. 17. The analytic solution reduces then to

H1

HP
=

γ a cosh (γ x)
sinh (γ a)

. (20)

It is useful for design purposes to evaluate eq. 21, which yields the results of eq.
22.

Ha

HP
=

γ a

tanh (γ a)
=

∣∣∣∣Ha

HP

∣∣∣∣ exp (i ς) . (21)

∣∣∣ Ha

HP

∣∣∣ = (coshM + cosN1)
√

M2+N2
1

(sinh M)2+(sin N1)
2 ; and ς = 1

arctan(N1
M ) − 1

arctan( sin N1
sinh M ) ;

where M = 4 π a
λ

√√
1+h2+1

2 and N1 = 4 π a
λ

√√
1+h2−1

2 .

(22)
It is also desirable to know the pressure difference on either side of the channel.
This can be done by substituting eqs. 16c, d and eq. 20 into relation 1b. An
integration leads to

pa

p0
=

coshM + cosN1

2
. (23)

The gross power output P0 based on a pressure averaged across the gap and in
time as well as the ohmic loss in the fluid POhm are given by eqs. 24.

P0 = Pλ s (1 − s) · ζ and POhm = Pλ s
2 · ζ;

with Pλ = v2
B

2·1016 a b σ λH
2
p and ζ =

(M2+N2
1 )

(
sinh M

M +
sin N1

N1

)
4(cosh M−cos N1)

(24)

2.5. Final design equations. In the previous sections the basic steps for
the calculation of an EMP have been derived. With the given design parameters
we now can calculate the operational parameters of the pump. Since the internal
heating of the coil windings determines the achievable pressure head, the coils have
to be designed in such a way that an optimal connection between the coils for a
given pressure head leads to a minimum electrical current density. For an ideal
ALIP (Annular Linear Induction Pump) having fine displaced coils, in which the
slot width of the current carrying coils as smaller than the active pump length L,
eq. 25 can be derived.

J2

∆p
=

(
2π a

µ0fλ2

)2

+
(
δtσt +

(
1 − vf

λf

)
δfσf

)2

σfL
(1− vf

λf )
λf

(25)

Inserting the design parameters ( or geometrical extensions) into eq. 25 and postu-
lating the required flow rate and pressure head ∆p one obtains the electric current
to be supplied by windings to the duct as a function of the wavelength λ at a given
frequency f of the travelling magnetic field. Using eq. 26 one can calculate the
electric potential in the windings φi to obtain ∆p

φ2
i

∆p
=

(πdm)2 λ f

σ L
(
1 − vf

λ f

) . (26)
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The peak magnetic induction HP directly at the coils can then be calculated.

Hp =
φi

(λ f)π dm
. (27)

Finally, the peak magnetic field is amplified by packages of ferromagnetic sheets,
which own a magnetic permeability µ being significantly larger than unity. In order
to calculate the effective magnetic permeability leading to the amplification of the
induction we have to integrate the room filling of the material in the active part (,
which means the height of the windings, the inner core and the space in between
which is the area to be pumped). The result has to be averaged over the whole
volume being treated. Using this volume averaging procedure a mean magnetic
permeability can be defined, which allows to treat the whole ferro-magnetic parts
in the active part of the pump as one domain. The real current density Jrealper
wave length λ is given by the geometrical design of the slots and the windings as
well as the line current IL of the power supply, and can be calculated with eq. 28.

Jreal =
ncurrent turns · nslots · IL

λ
. (28)

2.6. Power balance. The electric power input in the system using a con-
ventional 3-phase power supply with the potential φ and the current IL yields at
the operation point of a pump to an electric gross power input given by eq. 29a,
in which ϕgs the phase shift between voltage and current. The total hydraulic
pumping power is given by eq. 29b.

PInput =
√

3 · φ · IL · cosϕ , Phydraulic = ∆p · vf · π
4

(
d2

a − d2
i

)
(29)

In order to determine the hydraulic losses in the pump the hydraulic Reynolds
number has to be calculated using eq. 30a, where dh is the hydraulic diameter
(dh = da − di) and ν the kinematic viscosity. The loss factor ξF can be calculated
using the Blasius relation given in eq. 30b.

Re =
vf · dh

ν
, ξF =

0.3164
4
√
Re

. (30)

The pressure drop ∆pviscous through the whole pumping duct can be obtained
by eq. 31a. There, the hydraulic pressure drop coefficients ξi,o are obtained
using form relations collected in the book of Zierep& Bühler (1991). Knowing the
pressure drop in the duct the power loss due to viscous forces Pviscous can be easily
evaluated using relation 31b.

∆pviscous =
ρ

2
·v2

f
· L (ξF + ξi,o) , Pviscous = ∆pviscous ·vf ·π4

(
d2

a − d2
i

)
. (31)

The ohmic losses Pohm within the fluid and the losses due pulsating component of
the flux Pω are:

POhm = Pλ s
2 , Pω = Pλ

(
1 + s2

)
s2

, (32)

Assuming a magnetic field distribution behaving as a potential function the mean
magnetic field can be calculated. Additional ohmic losses appear due the electric
current flow in the tube of short-cut core of the pump Pt,s and the tube walls
adjacent to the coils Pt. The current circulating in the tube walls Jt can be
estimated assuming ideal electrical contact at the fluid-wall interface using the
relations:

Jt = (λ · f) σt B (δt · L) ;Rt =
1
σt

· 2
π (da + δt)

; Pt = Rt · J2
t , (33)
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where Rt is the wall resistance in Ohm (Ω). Besides to the direct ohmic heating
due to the current flow within the tube walls the ferromagnetic iron sheets within
the core of the pump are also ”microwave” heated. Although the iron sheets are
separated from each other by a resistive oxide layer (which is electrically insulat-
ing) the electric currents induced into them can circulate throughout the inner
core, because the sheets are embedded in the electrically conducting structural
material. The appearing currents can hardly be calculated, but assuming an hy-
perbolic decay of the magnetic induction within the core the flux penetration can
be assumed.

Finally, the current through the copper coils and the connection between the
coils cause also an ohmic loss. The total resistance Rwind in all coils as well as the
power released there PCoil is then given by:

Rwind =
4
π

lcoil

σCu Acoil
· nslots; Pwind = RCoil · I2

sup ly , (34)

where Acoil is the current carrying cross section area of the winding, lCoil its
length, nslot the amount of slots and σCu the specific conductivity of the copper.

The derived equations of section 2.2-2.6 are applied to two annular cylindri-
cal induction pumps and the obtained calculated data are compared to the ones
obtained by the model.

3. Electro-Magnetic pumps considered for the model verification.
Within the MegaWatt Pilot Experiment (MEGAPIE) to be conducted at the

Paul-Scherrer Institute (PSI) the feasibility of a lead-bismuth alloy cooled target
for spallation purposes will be demonstrated. A major component of such targets
are the pumps, which are necessary to remove the heat from the highly heat loaded
window facing the proton beam generated by the accelerator and transporting
the heat through the heat exchangers. A more detailed information about the
MEGAPIE project may be taken from the internet.The Megapie target pump
system is given by two pumps being arranged in series. One pump, the main
pump, is providing a lead bismuth flow the so-called main flow towards an annular
gap and a second pump is delivering the flow rate necessary for the cooling of
the stagnation point in the center of the hemisphere of the beam window. In the
present analysis we restrict our discussion on the main pump, operating with lead
bismuth (Pb45Bi45) in the temperature range 230˚C-480˚. Detailed information
on the specific design may be taken from Dementjev et al. (2003) or Freibergs &
Platacis (2002,2003).

The second pump type considered are annular linear induction pumps op-
erating with sodium at temperatures from 120-500˚C, which were used in the
Karlsruhe dynamo experiment, see e.g. Müller and Stieglitz (1997, 2001, 2004)

The design parameters of the pumps considered are displayed in table 1. A
principle sketch of both systems is shown in figure 2. The geometric dimensions
of both pump units are given in table 2. The thermophysical data used in the
calcualtions have been taken from Imbeni et. al (1999), Lyon (1952) and Yefimov
et al. (1996).

From these geometrical values of the pump, the electric connection of the
individual coils and the postulated pressure heads and flow rate one can derive the
principle features of both pumps, which are given in table 3.

4. Performance of the pumps and power balance. Inserting the
design parameters into the pump equation 25 and postulating the required flow
rate and pressure head one obtains the electric current to be supplied by the coil
windings to the duct as a function of the wavelength λ at a given frequency f of
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Table 1. Design specification of the MEGAPIE pump and the dynamo pump.

Parameters MEGAPIE- Pb45Bi55 Dynamo Sodium

∆p [Pas 105] 0.2 3

flow rate Q [m3/h] 18 130

electric Power [kW] 8.2 51.34

active Power [kW] 9.8 44.46

current I [A] 35 78

current density j [A/mm2] 6 2.786

potential φ [V ] 108 380

phase shift ϕg φ,I [˚] 30˚ 30˚

net frequency f [Hz] 50 30

induction in Passive core B[T ] 1.2 1.64

temperature Top[˚C] 480 150

Table 2. Design parameters of Pb45Bi55 pump and sodium pump.

Design MEGAPIE- Pb45Bi55 Dynamo Sodium

effective pump length L [m] 0.36 1.323

liquid metal gap a [mm] 15 8.5

inner diameter of flow channel di [mm] 102 121

outer diameter of flow channel da [mm] 122 138

mean diameter of flow channel dm [mm] 107 129.5

wall thickness inductor δt [mm] 1.5 3

wall thickness core δt [mm] 1.5 2

air gap core inductor δair [mm] 0.5 0.25

Table 3. Calculated induction features of both ALIP’s.

design unit relation MEGAPIE Dynamo

wave length λgmm] λ = L/nPole 180 441

number of poles 3 3

mean fluid velocity vf [m/s] vf = Qmax/ACross 1.42 10.442

mean magnetic field velocity vB [m/s] vB = λ · f 9 13.23

slip ratio s [/] s = (vB − vf ) /vB 0.84211 0.21071

effective real efficiency η [%] η = (1 − s)
(

s
1+s

)
7.218 13.74
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Fig. 2: (a) Principle sketch of the MEGAPIE main pump using Pb45BiBi55
Freibergs&Platacis (2002, 2003). (b) Schematic drawing and photograph of the
inductor of the sodium pump used in the dynamo experiment, see Stieglitz &
Müller (1997).
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the travelling magnetic field. The figures 3 show the necessary current density per
meter to be applied to the duct as a function of the wave length λ.

For the dynamo pump one obtains a local minimum of the current density for
a wave length of λ=441mm and the related current density is J=33051A/m. The
slip s to be given by the design calculates to s = 0.2107, respectively. All these
values hold for sodium at 150˚C and have to be matched by the design. In case of
the MEGAPIE pump the actual wave length is far away from the local minimum,
which yields from the restricted space available for the desired operation.
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Fig. 3: Calculated required current supply to the duct and corresponding
slip ratio as a function of the wave length λ for the MEGAPIE pump (a) and the
Dynamo (b).

In both pump designs MEGAPIE and the Dynamo the current carrying coils
fill about 80% of the active length, while the ferro-magnetic iron sheets occupy the
rest of domain. Applying the nominal operation current to the coil system in each
of the pumps of the MEGAPIE units exhibits a real current density of 36360A/m
is obtained, which is about 12% larger than the required current density per meter.
In case of the dynamo pump a real current density of 45184A/m is obtained, which
is considerably larger than the required one from fig. 3b.

For the calculation of the pump performance diagrams the dimensions of the
slots and the winding set-up must be given,. Additionally, the connection between
the coils is necessary. In case of the MEGAPIE pump all coils are interconnected
in form of a triangle connection, whereas in the Dynamo pump a star triangle
connection is used, which modifies eq.29a slightly. The detailed data may be
taken from table 4.

Applying the nominal operation current to both pumps an idealized pressure
flow rate diagram can be calculated. It does not account for the hydraulic losses

45



R. Stieglitz, J. Zeininger

Table 4. Electric connection of the inductors of both ALIPS.

Design MEGAPIE Dynamo

number of large slots per pole nslots 9 6

number of small slots per pole nslots - 6

current turns per slot ncurrent,turns 24 27

number of poles nPoles 2 3

slot width small sw[mm] - 23.5

slot width large slot sw[mm] 11 36

in the piping and to the first order to the electro-magnetic end effects both at the
inlet and outlet of the pump. If both effects are included according to the section
2.2-2.6 the flow rate pressure diagrams shown in the figures 4a, b describe the
performance of both pumps.

The attainable pressure head especially at low flow rates (- small slip ratios-)
is underestimated by the model for both pumps as shown in figures 4, because
the model assumes that the magnetizing current is zero outside the pump, which
is not true since the magnetic field there decays as potential field. Moreover, the
ferro-magnetic parts are a little bit larger in both real configurations, so that the
magnetic field smoothes out at both ends. A second effect leading to a smaller
pressure calculated by the model is given by the assumption that the fluid velocity
across the gap is considered as constant in order to keep the problem analyti-
cally tractable. This yields at lower slips, which appear at lower velocities to an
overestimation of the ohmic losses and thus to a lower pressure. Besides all sim-
plifications made the deviation between analytically calculated pressure head and
experimentally found data is only about 5% in case of the Dynamo and there the
deviations between model and experimental values decreases for increasing flow
rates. Regarding the pump efficiency for the sodium a local efficiency maximum
is obtained for a flow rate of approximately 90m3/h which corresponds to a slip
of almost 0.5. A further increase of the flow rate leads to higher pulsation losses
and thus the efficiency decreases continuously beyond this point.

A similar situation is observed for the MEGAPIE application, where the cal-
culated pressure is underestimated by the model at low slip ratios s. But here
a deviation between model and experiment of about 10-15% remains also for the
higher flow rates. One explanation for the deviation is that the slot width to ac-
tive length ratio is not negligible which yields to strong pressure gradients dp/dz
along the pump. A second aspect for the deviation between the model and the
experiment is related to the model assumption of a constant flow velocity in the
pumping channel. If one calculates the pressure variation across the duct height
in the MEGAPIE set-up a value of 1.67 is obtained, for which the previously made
assumption of a constant flow velocity is for sure not valid.

Due to the high slip chosen in the design because of the limited length available
in this application the efficiency is rather small and reaches only about 7% at the
nominal operation point. Although it increases linearly with the flow rate it is
considerably smaller than in the sodium case. One of the reasons for this behaviour
is the weak specific electric conductivity of the eutectic PbBi alloy, which is even
smaller than that of the stainless steel wall tubes. This yields to significantly larger
current densities in the wall tubes of the PbBi application than in the sodium case,
where the sodium is significantly better conducting than the wall tubes.

Fig. 4: Calculated ( ) pressure head of the MEGAPIE (a) and Dynamo
(b) ALIP as a function of the flow rate at nominal current and the related pump
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efficiency η in percent (- - -). The circles denote the measured pressure difference
over the pump.

5. Summary. Within this article a simple two-dimensional model to
calculate analytically linear induction pumps is derived. It contains the aspects of
the losses due to end effects, the magnetic flux penetration in the pump, general
design equations and some considerations about the power balance.

As an example for the applicability of the model two different existing annular
linear induction pumps using two different liquid metals, namely sodium and the
eutectic Lead-Bismuth alloy PbBi, have been chosen for the recalculation. For
both of these pumps experimental data have been compared with the analytically
calculated values.

The comparison of experimental and analytical data shows that the model
underestimates the attainable pressure head in case of small slip ratios. This un-
derestimation is based on an inadequate assumption for the magnetic induction
outside the active length, which has been used to keep the solution analytical.
But, at the small slip ratios the deviation is of order 10% so that it is acceptable.
A second deficit of the model appears for large gaps of the duct channel, as ap-
pearing in case of the PbBi application for MEGAPIE. Large gap sizes yield to a
strong pressure variation across the duct normal to the wall, which immediately
lead to a non-uniform velocity profile. The assumed shape of the velocity profile,
however, is an input to the model and has been set here to a constant value. De-
spite this inadequate velocity profile assumption the deviation between model and
experiment does not increase too strong for larger flow rates. For the MEGAPIE
application even 50% above the nominal operation the deviation between model
and experiment does not exceed 20%.
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DEMENTJEV, S., GRÖSCHEL, F., IVANOV, S., PLATACIS, E., VON
HOLZEN, G., ZIK, A., 2003, EMPS for MEGAPIE target. Testing of the Proto-
type. PSI-Report MPR-11-DS34-005/0.

FREIBERGS, E., PLATACIS, E. 2002, Electro-magnetic pump system- A
detailed design. Institute for Physics Report IPUL 1069.00.00-05.

FREIBERGS, E., PLATACIS, E. 2003, EMP System for PbBi melt at 280˚C-
450˚C- Long run test for EMPS Prototype. Institute for Physics Report 20th Feb.
2003.

IMBENI, V. MARTINI, C., MASINI, S., PALOMBARINI, G., 1999, The
properties of the eutectic alloys Pb55.5Bi and Pb17Li. ENEA-Report DT-EUB-
00001, Part 2.

LYON, R.N. 1952 Liquid metals handbook; Navexos P-733; Second edition.
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