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We study analytically the shaping of liquid metal drops using time-dependent magnetic
fields. We consider perfectly non-wetting drops of finite curvature that are placed on
a horizontal plate. The magnetic fields are generated by an inductor that is fed by an
electric current I showing a square root-type time dependence of the form I ∝ t1/2. In this
case the interactions of the applied magnetic field and the eddy currents induced within
the liquid metal generate a steady distribution of the Lorentz forces inside the drop.
These Lorentz forces can be used to squeeze the drop against the actions of both gravity
and surface tension. We derive a non-linear ordinary differential equation for the drop
contour describing steady-state deformations. This equation is integrated numerically
using a standard shooting method. We show results of our analysis for various values
of the Bond number Bo, i.e., drop volumes, and the magnetic Bond number BoM, i.e.,
magnitudes of the Lorentz force.

Introduction. The principle of electromagnetic shaping is commonly used
in metallurgical applications [1]. Usually, a high-frequency magnetic field is im-
posed on a liquid metal with a free surface. Inside the metal, therefore, Lorentz
forces fL = J×B will arise. The high frequency leads to a skin-effect limiting the
effects of the Lorentz forces to the vicinity of the surface. These forces basically
act as a magnetic pressure consisting of a constant and an oscillating part. The
constant part allows to squeeze and to support liquid metal surfaces. Alternately,
the oscillating part presses and pulls on the metal surface thus bearing the po-
tential of causing instabilities, see Kocourek et al. [2] and Conrath & Karcher
[3], who studied the behaviour of liquid metal drops in high-frequency magnetic
fields. For low-frequency magnetic fields a similar approach was performed in the
“Starfish experiment” of Sneyd et al. [4].

Our arrangement consists of a longitudinal liquid metal drop submitted to
a monotonically increasing magnetic field. The field is generated by an inductor
fed by an electric current of the form I ∝ t1/2. In this case, the Lorentz forces
are steady and fully penetrate the drop. They tend to push the drop away from
the inductor. Analogously, for a monotonically decaying inductor current, i.e.,
I ∝ (t0 − t)1/2, the Lorentz forces act towards the inductor, i.e., pulling the drop.

The results presented here are restricted to the case of steady squeezing of
the drop. We analyze the effects of drop volume and magnetic field strength
on the squeezing. The paper is organized as follows. In Sec. 1 we present the
mathematical model. In Sec. 2 we discuss the main results of this model. Finally,
Sec. 3 provides a summary.

1. Mathematical model. Fig. 1a shows the geometry of the analyzed
arrangement. To squeeze the drop with a constant force, the inductor is fed by
an electric current I = I0 ·

√
1 + 2Ft. Then the magnetic field will be of the form

B = B0(x, z) ·√1 + 2Ft too, see Fig. 1b. Here, F is a constant factor. Applying a
Faraday’s law, the induced eddy currents take the form J = J0(x, z)·F/

√
1 + 2Ft.

Finally, for the induced Lorentz forces we obtain fL = fL0(x, z) · F . In detail, the
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Fig. 1. (a) Geometry and properties. (b) Function of the magnetic field in time.

Lorentz forces write as follows:
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In this equation, x and z denote the spatial coordinates inside the drop,
whereas X and Z mark the position of the inductor, respectively, cf. Fig 1a.
Obviously, these Lorentz forces are a function of space but not of time. Likewise,
as the magnetic field is decreased, we obtain a constant force in the opposite
direction, cf. Fig. 1b. The integration of the Lorentz forces between x = 0, z = 0
and the drop surface yields the static pressure distribution

phs (x, z) = −F · σ

2
·
(

µI0

4π

)2

·
{

ln

[
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]}2

− ρgz + p0 . (2)

Here, σ, µ, ρ and p0 denote the electrical conductivity, the magnetic permeabil-
ity, the fluid density and the bottom pressure at z = 0, respectively. Once the
magnetically induced pressure on the surface is known, we can insert it into the
so-called Young–Laplace equation which describes the pressure equilibrium on the
drop surface. This equation reads as

γ ·k (x, z)=F ·σ
2
·
(

µI0

4π

)2

·
{

ln

[
(x−X)2 + (z−Z)2

(x+X)2 + (z−Z)2

]}2

+ ρg (z−a) + γ ·k0 , (3)

where γ is the surface tension of the liquid, k(x, z) is the curvature on the drop
surface, and k0 is the surface curvature at z = a, cf. Fig. 1b. For a further
treatment of the problem it is convenient to introduce dimensionless numbers.
Therefore, we choose the drop height a as a characteristic dimension and define
the Bond number Bo and the electromagnetic Bond number BoM as follows. These
parameters relate the hydrostatic pressure and the magnetically induced pressure
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to the surface tension pressure, respectively.

Bo =
ρga2

γ
, BoM = F · σ

2
·
(

µI0

4π

)2

· a

γ
. (4)

The normalized Young–Laplace equation now reads as

k (x, z) = κM · fM (x, z) + Bo · (z − 1) + k0 (5)

where fM(x, z) =
{

ln
[

x − X)2 + (z − Z)2

(x + X)2 + (z − Z)2

]}2

. Since the curvature is a

nonlinear term of the form k(x, z) = z′′/(1 + z′2)3/2, Eq. (5) cannot be solved
analytically. Therefore, we apply a shooting method based on a numerically
aided geometrical construction of the drop contour. We rewrite the curvature as
k(x, z) = dα/ds, where α and s are the surface angle and arc length, cf. Fig. 1b.
Starting from the top of the drop at x = 0 and z = a, we choose a special initial
angle α = 0 and an arbitrary initial curvature dα/ds. We imply an improved
Euler method [5] to calculate point after point of that contour. This procedure is
stopped when the contact angle of αC = 180◦ is attained. As we do not know the
initial curvature beforehand, after each shot we have to adjust it iteratively until
the final height of the point α = 180◦ becomes zero.

2. Results and discussion. Fig. 2 shows the results for a drop that
originally spreads to c0 = 3. The inductor is located at X = 5 and Z = 0. As the
magnetic field increases, the drop is squeezed. During the squeezing process the
drop volume is conserved at its initial value, where BoM = 0. Fig. 2a shows the
resulting drop contours for a stepwise increase of BoM = 0 . . . 10. In the case of
BoM = 10 the drop height is nearly tripled, while the contact position is reduced
by a factor of three. Fig. 2b shows the squeezing of the same drop in the range
BoM = 0 . . . 70. The drop mounts up to about five times its original height, while
the contact position is reduced by a factor of six.

Fig. 3a shows the squeezing of a drop that initially spreads to c0 = 2. Here,
the inductor is located at X = 10/3 and Z = 0 to keep the relative position
between the inductor and the contact point of the drop. Due to the smaller Bond
number, the effect of gravity diminishes. As a result, in the case of BoM = 10
the slope of the drop flank is apparently steeper compared to Fig. 2. Beside, the

(a) (b)

Fig. 2. Inductor at {X, Z} = {5, 0}, (a) BoM = 0 . . . 10, (b) BoM = 0 . . . 70.
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Fig. 3. Inductor at (a) {X, Z} = {10/3, 0} and at (b) {X, Z} = {5/3, 0}.

contact position is divided by a factor close to four. Fig. 3b shows the squeezing of
a drop that initially spreads to c0 = 1. Here, the inductor is located at X = 5/3
and Z = 0. In the case for BoM = 10, the drop even hangs over and the contact
position is divided by a factor of five.

3. Summary. We have investigated analytically the steady electromag-
netic squeezing of a liquid metal drop. We use a special time-dependence of the
magnetic field to achieve steady electromagnetic forces. The resulting Young–
Laplace equation describing the drop surface is solved by a shooting method. We
examine the effect of the magnetic field strength and drop volume on the squeez-
ing. According to our results, this kind of magnetic field seems highly suitable for
electromagnetic shaping purposes.
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