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The efficiency of technological processes of producing metals and alloys, con-
tinuous ingots and castings of ferrous and non-ferrous metals is mainly determined
by the intensity of heat and mass transfer in the liquid phase.

The Electromagnetic stirring (EMS) method developed and proposed by En-
ergetics Technologies Ltd (ET) provides a possibility of controlling such heat and
mass transfer. It uses anharmonic traveling (rotating) magnetic fields excited by
a system of electric currents whose amplitude and frequency are modulated by
periodic (in time) functions with the frequency exceeding the carrier frequency.
With a suitable choice of modulation parameters, we can considerably increase
the intensity of melt stirring at the expense of increased turbulent transfer inten-
sity due to the excitation of the so-called forced turbulence, without increasing the
mean velocity of convective flows. Thus, in this case, a more intense mixing can
be achieved due to a more intense turbulent transfer at a reduced mean velocity
(convective transfer).

1. Estimation of mean velocity of turbulent flows. Phenomena
arising in liquid metals turbulently rotating under the action of modulated RMF
are studied in an induction-free approximation using the “external” friction model
[1].

In vessels of circular cross-section, these phenomena are described in a cylin-
drical coordinate system r, φ, z rotating at an angular velocity Ω̄ (Ω̄ = Ω/ω0 is
a dimensionless angular velocity of the rotation of quasi-solid turbulent flow core)
by the following system of dimensionless equations:
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where S1 = 1 − Ω; S2 = (k + 1) /2 − Ω; Ω = Vϕ/r.
In vessels of rectangular cross-section, these phenomena are described by the

following equations in Cartesian coordinates x, y, z:
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Expressions for electromagnetic body forces (EMBF) are derived basing on the
solution of the equation for the z-component of the vectorial potential of magnetic
induction (b = rota):
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with the boundary condition

∂az

∂r

∣∣∣∣
r=1

= − (1 + e sin 2πφM ) sin 2πφ0, (6)

where φM = kτ − ϕ, φ0 = τ − ϕ, � = µ0σωR2
H .

The solution of Eqs. (1)–(4) has the form
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To determine the initial angular velocity value involved in the expression for
λ, the following algebraic equation derived from Eq (1) at Vϕ = Ωr is used:
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where Qε = Ha2δz/Re1−ε
ω Cε.

Computations have shown that for low values of the Hartmann number, the
velocity profile looks as a cubic parabola, while for high values it acquires the
form of a quasi-solid core of the near-wall and boundary layer, whose thickness
decreases with the growing Hartmann number.
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2. Specrtal density of turbulence in modulated and non-modulated
cases. It is well-known that the rotation of a conducting fluid under the action
of an external rotating magnetic field is turbulent. Spectral density of turbulent
energy in the inertial interval depends on the frequency of turbulent fluctuations
mode ω as follows:

E(ω) ∼ ω−γ , (11)

where γ is a spectral exponent in the inertial interval.
If energy is supplied to turbulence only from large-scale vortices with the

frequency ω0 and then is redistributed over vortices of various sizes, the energy of
vortices with the frequency ω can be determined as

E(ω) ∼ E0(ω0)
(ω0

ω

)(γ+1)

, (12)

where E0(ω0) is the energy injected into turbulence. It is noteworthy that the
energy E0(ω0) can be introduced into turbulent fluctuations both through the
mean flow instability (i.e., it can be connected with the mean velocity value, – case
1) and as a result of fluctuations of the force connected with the external RMF
fluctuations at frequencies close to ω0 (case 2). If the part of mean flow energy
transferred to turbulent fluctuations does not exceed 10–15%, the direct energy
injection at frequencies ∼ ω0 is much higher. Hence, if the purpose of the impact
is to generate a high turbulence intensity, then it is necessary to form a magnetic
field spectrum with fluctuations of the force with the frequency ∼ ω0. In this case,
the necessary consumed energy is reduced in comparison with case 1, which is
observed experimentally. Naturally, case 3 is also possible, which is a combination
of cases 1 and 2. In this case, at the application of a modulated magnetic field, an
extensive spectrum of frequencies of the external force fluctuations arises. Such
situation is characteristic of the case, where the energy of mean and turbulent
motion of liquid metal is due to the work of EMBF arising under the action of
RMF.

When turbulent energy is supplied simultaneously to vortices of various scales
(and, surely, of various frequencies), the exponent γ in Eq. (12) can change. In
fact, let the force F0(ω0) generate large-scale turbulent vortices with the frequency
ω0 in the most general case 3. Then we can evaluate the energy of these vortices
as

E0 ∼ α1(F0/ω0)2 (13)

On the other hand, if the force F (ω) generates vortices with the frequency ω > ω0,

E′(ω) ∼ α2[F (ω)/ω]2 + E0
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Then in a stationary mode, the final energy distribution in frequencies corresponds
to Eq. (12), but with different γ1 values. Therefore, if

E′(ω) ∼ E0(ω0)
(ω0

ω

)γ1
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then, taking into account Eqs. (13) and (14), we obtain that
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At F (ω) = 0 we obtain γ = γ1. It follows from Eq. (16) that since its right-hand
part > 0 and ω0/ω < 1, γ1 < γ is always valid, i.e., with increasing F (ω) the slope
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exponent in Eq. (15) decreases. On the other hand, as shown in [4], in scales close
to the characteristic scale and exceeding it, the parameter γ < 0. However, at
the same time ω < ω0, which results in the growth of F (ω) and energy growth at
the frequencies below ω0. It means that relative energy of vortices grows with the
frequency ω. Assuming that the energy is proportional to the number of vortices
Nω with the specified frequency, we can conclude that Nω grows, which should
essentially affect the properties of local mixing of a liquid metal.

3. Experimental results. Experimental check of the developed estima-
tion methods was performed in vessels of circular or square cross-section made
of non-magnetic steel or plastic arranged in the explicit-pole inductor bore. The
latter was fed by a programmable three-phase power sources produced by Pa-
cific Power Source (AMX-Series) and California Instruments (iX-Series). They
provided various amplitude- and frequency-modulated voltages with modulation
depth and frequency varying in a broad range.

The experiments were carried out at room temperature on a ternary eutec-
tic alloy InGaSn and mercury. Magnetic field spatial distribution and spectral
characteristics were measured with a teslameter FW Bell 6010 and oscilloscope
Fluke 199C. Mean velocities of the turbulent flow were measured using a propeller
installed in the quasi-solid flow core and a digital tachometer Line Seiki E90-103.
Local velocity values were measured using two-electrode conductive probes with
permanent magnets [2, 3] connected to a low-noise preamplifier AMETEK 5113.
The signal was processed using an A/D converter PCI 6052E and a virtual mea-
suring system on the basis of LabVIEW 7.0 allowing spectral analysis of dynamic
flow characteristics. Mean velocity profiles were also measured by an ultrasonic
Doppler velocimeter DOP-2000.

The obtained experimental results compared with the computed ones point
to a universal character of the described model.

4. Summary. The proposed method of magnetohydrodynamic (MHD)
stirring of melts consists in the use of anharmonic traveling (rotating) magnetic
fields excited by an m-phase system of amplitude- and frequency-modulated cur-
rents. This method allows individual flexible control of the intensity of convective
and turbulent heat and mass transfer. We present the results of theoretical stud-
ies of MHD effects arising at the usage of modulated rotating magnetic fields in
liquid metals. Besides, we present new results that were obtained in laboratory
experiments on low-temperature melts.
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