
The 15
th

Rigaand 6
th

PAMIR Conference on FundamentalandApplied MHD

Liquid metal technologies

EVAPORATION OF THE HETEROGENOUS
LIQUID FLOW FORCED BY THE MAGNETIC FIELD

OVER A WALL

Z. Lipnicki, D.Waloryszek
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Introduction. One of the most important problems in modern technology
is the cooling of electronic devices and the limitations set on the maximum tem-
perature [1], which cannot exceed the acceptable value to secure correct work of
a device. The solution to the cooling problem is of crucial importance for the
proper work of these elements, which get heated in time with great intensity. The
effective cooling of these elements is also very important.

Recently, an investigation has been carried out to develop an MEMS (Micro-
Electro-Mechanical Systems) based micro cooling device [2]. This new method
is a very efficient technique to remove heat from chips by surface evaporation of
the chilling liquid. This problem is very relevant thus there is an urgent need to
develop efficient cooling technologies.

It is of crucial importance to make use of devices, which can create electric
and magnetic fields. The fields are designed for realization of the cooling process.
Theoretical magnetic fluid flows in pipes have been investigated [3, 4, 5]. The
velocity profile in the channel and the resistance of magnetic laminar flows were
defined.

We are aiming at obtaining a higher level of cooling. We show a refrigeration
cycle which is a slightly modified Linde cycle. The present study focuses on the
prediction of the distribution of temperatures of both the cooling liquid layer and
the cooled element.

1. Presentation of the cooling device. The magnetic fluid flows inside
the refrigeration device. In Fig. 1 we can see both the schematic diagram and the
theoretical cycle of the chip being cooled. The work and the heat are generated by
a magnetic pump and the chip, respectively. As a result, the pressure and thereby

(a) (b)

Fig. 1. (a) Schematic diagram of a refrigeration vapour process. (b) Refrigeration cycle.
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Fig. 2. Flows of magnetic fluid in the pipe.

the temperature are increased, as shown in lines 1-2. This process is composed
of two phases: a vapour process 1-A, in which the chip supplies heat, and an
isentropic compression process in the ideal cycle A-2.

The working medium then enters a condenser in which heat is extracted, re-
sulting in a saturated liquid. By using an expansion valve the pressure irreversibly
decreases. A throttling process is employed in which enthalpy remains constant
3-1.

This expansion process is a non-equilibrium process, so the area under the
T-s diagram does not represent the net work input.

2. Pressure and driven flows of a magnetic fluid in a pipe. The
laminar flow of a magnetic fluid, which has the density ρ and the kinematic vis-
cosity ν with paramagnetic particles in a cylindrical tube of radius R and length
L in the presence of a non-uniform axial magnetic fluid is studied. The flow of the
fluid is driven by a constant pressure gradient −dp/−dx > 0. The model of the
phenomena is presented in Fig. 3.

The basic linear momentum equation for an incompressible magnetic fluid
(fluid composed of super-paramagnetic particles) in the dimensionless variables
for a unidirectional axisymmetric flow in a tube has the form, as obtained by
Cunha and Sobral [3]:

d2u

dr2
+

1
r

du

dr
− ε

[(
du

dr

)2

+ 1

]
= Re · Π , (1)

where:

• the dimensionless velocity u, which is equal to the ratio of the real velocity w
and the average velocity w of the flow,

• the dimensional radius r = r1/R,
• the dimensional axis x = x1/R,
• the Reynolds number Re = w̄ · R/ν (ν – viscosity of the fluid),
• the small parameter ε depends on the magnetization relaxation time, the

Reynolds number Re, the magnetization of the fluid and the magnetic field,
which is dependent on the location of the x-axis,

• the dimensionless parameter of pressure p

Π =
1

ρ · w̄2

∂p

∂x
.

The equation was solved by the regular perturbation method for the velocity
profile as a function of the magnetic and flow parameters [3]. The fluid velocity
on the wall of the pipe vanishes.
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Evaporation of the heterogenous flow forced by the magnetic field over a wall

Fig. 3. Scheme of chip cooling.

The above mentioned solution of equation (1) makes it possible to obtain the
volume flow of the fluid by the following equation

V̇ =
∫∫
S

u · dS =

2π∫
0

R∫
0

u (r) · r · dr = 2 · π
R∫

0

u (r) · r · dr, (2)

which indirectly renders it possible to determine the rate of refrigeration of the
chip. It will be the subject of further consideration.

3. Cooling of the chip. The differential equations of heat conduction in
the chip and in the thin layer of liquid (see Fig. 4) have the dimensionless forms:

∂2θc

∂y2
+ BC =

∂θc

∂τ
,

∂2θl

∂y2
=

∂θl

∂τ
, (3)

which make it possible to find the temperature distributions. We assume that the
following set of dimensionless parameters was introduced in the above equations:
time, co-ordinate, liquid layer, chip temperature and liquid temperature

τ =
ac · t
H2

, y =
y1

H
h =

h1

H
, θc =

Tc − T0

tb − T0
, θl =

Tl − T0

tb − T0

where the parameter BC =
q̇v · H2

Tb − T0
· 1
λc

is the volume of the source of heat, and

another dimensionless parameter

qvap =
H

λc (Tb − T0)
q̇ ,

denotes the stream heat from the surface of the liquid, where: q̇ is the vapour heat,
q̇v is the source of heat, Tb is the boiling temperature, T0 is the initial temperature,
λc is the thermal conductivity of the chip, λl is the thermal conductivity of the
liquid

(
λ̃ = λl/λc

)
, ac is the thermal diffusivity of the chip.

The total expression for both the boundary and the initial conditions may be
written as:

∂θc

∂y
= λ̃

∂θl

∂y
and θc = θl for y = 1 ,

−∂θl

∂y
= qvap and θc = θl for y = 1 + h ,

θc = θc0 and θc = θl0 for τ = 0 .

(4)
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Fig. 4. Temperature distributions in the chip and in the liquid (BC = 2, λ = 0.8, θb = 1).

Finally, an exact stationary solution of Eq. (3) can be expressed as

θc = θb − BC

2
(
y2 + 1

)
+

(
BC − λ̃ · qvap

) · x + qvap(h + λ̃) for 0 ≤ y ≤ 1 ,

θl = θb − qvap(y − 1 − h) for 1 ≤ y ≤ 1 + h .
(5)

The above solutions in the graphical form are presented in Fig. 5. The influ-
ence of the volume of heat on the temperature distributions is evident. We can
see that the simple theoretical model, which is presented here, gives interesting
results. Utilization of the technical properties of the device to carry out the chill-
ing process is very important here. The evaporation heat of the liquid is relatively
large and, therefore, only a small flow of the liquid is sufficient to ensure high
efficiency of cooling. In other words, no large flows are required to secure effective
cooling and the driving power as well as the energy supplied does not have to be
large.
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