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Introduction. The induction furnace with cold crucible (IFCC) offers var-
ious technological and economical advantages, like high-purity cast products as
well as melting, alloying and casting in one process-step [1]. Practical experiences
show that the overheating temperature of the entire melt, which is determined
by the electromagnetic, hydrodynamic and thermal behaviour of the cold crucible
installation is one of the key parameters of this technological process.

Former experimental investigations in induction crucible furnaces (ICF) car-
ried out that, at any given time moment, the velocity field is far from symmetrical.
The analysis of experimental and numerical results shows that the flow fluctuations
contain also low-frequency component which may have significant influence on the
heat and mass transfer processes in the melt. Considering the transient and three-
dimensional character of this phenomenon, it was expected, that steady-state or
2D modelling, without implementation problem-specific modifications, will be not
able to describe correctly such flow parameters as temperature and concentration
distributions. That’s why the Large Eddy Simulation (LES) numerical technique
was approved to be an alternative for the models based on Reynolds Averaged
Navier-Stockes (RANS) equations. The results of the transient 3D LES simula-
tion contained the large scale periodic flow instabilities similar to those obtained
from the experimental data.

Due to these positive results, transient 3D calculations using the LES model
were carried out in order to investigate the possibilities to increase the overheating
temperature of the melt in the IFCC. These numerical studies were concerned with
influence of various design and operation parameters. The commercial CFD soft-
ware package FLUENT was used for the application of LES to the hydrodynamic
and thermal problem, but the external electromagnetic forces and the shape of the
melt surface were calculated using the commercial software package ANSYS and
self-developed FEM codes.

Aluminium served as a model melt for the experimental validation of the nu-
merical results for the temperature and melt flow velocity field. Suitable measuring
methods were selected, improved and realised, particularly with regard to the high
melt temperature (~ 700°C) and very aggressive behaviour the aluminium melt.

1. Experiment. The experimental investigations were performed using 6
kg pure aluminium (99.5%) in the cold crucible with a radius of 7.8 cm and a height
of 26 cm. The output power of the generator was 200 kW at the frequency range
8-10 kHz. The meniscus height reached up to ~ 22.5 cm under those conditions.
With these process parameters the meniscus shape of the melt surface is quite
stable and therefore it is possible to perform detailed investigations of the free
melt surface itself, the temperature field and the turbulent melt flow.

The temperature distribution was measured using NiCr-Ni thermocouples,
which were placed in a protective ceramic tube to avoid their destruction in the
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very aggressive aluminium environment dur-
ing long-lasting experiment. However, due to

702 this protection, the thermal inertia of the ther-
mocouple was quite long (~ 2.8 s), therefore,
692 it was possible to measure only time-averaged

temperature values. In order to investigate
temperature oscillations in several character-
681 istic points of the melt, the thermocouple was
used without ceramic protection. In this case
the response time became approximately 0.8 s
671 (see Fig. 4), but the operational time for one
thermocouple decreased to the 10—15 minutes.
The time-averaged temperature field as it was
measured is shown on the Fig. 1. There is
| clearly seen how temperature distribution is
_' 650 influenced by the thermal boundary condi-

tions. The lowest temperatures are at the
water-cooled bottom, where was detected the
Fig. 1. Measured temperature solid skull layer with thickness about 10 mm.
distribution. Also the radiation losses from the free surface
lead to the formation of relatively cold area at the top. And the highest temper-
atures are observed in the intensive inductive heating region. The temperature
distribution in the rest of the melt is more or less homogeneous.

The melt flow velocity was measured with electromagnetic sensor [2]. Low
corrosion durability of the flow velocity measuring sensor in the aluminium melt
appeared to be the greatest problem in the measurements performed. After 10-20
minutes of operation the magnetic steel core and the steel case were so greatly
corroded that the sensor became unfit for the further operation.

All sensors were calibrated in the induction crucible furnace with Wood’s
metal, which has melting temperature of 72°C. The measured sensitivity of the
sensors varied through the range 0.3-0.8 uV/(cm - s71).

The main results of our velocity measurements in the liquid aluminium show,
that flow pattern consists of two vortexes and the zone of their interaction is
located between z=7 and z=9 cm. The maximum axial velocity detected in the
upper vortex on the symmetry axis was 4045 cm/s. In overall, these observations
are in quite good agreement with numerical predictions.

660

2. Numerical modelling.  The electromagnetic field inside the crucible
is not fully axis-symmetrical, due to the conductive slit walls. Therefore, an ap-
proximation should be used for 2D distribution of heat sources and volume forces
in the melt.

2.1. Steady-state 2D simulation. =~ We have chosen the RNG modification of
the k—e model for the 2D simulation of the KIT process. According to our previous
numerical studies, it has delivered more accurate predictions about turbulence
properties in the recirculated flows than the standard model. But, both of them
usually underestimated the heat transfer intensity between the two time-averaged
main flow eddies formed by the external electromagnetic forces [3, 4]. The thermal
boundary conditions for upper and lower vortexes significantly differ — we have
the radiation from the free surface above and water-cooled bottom below. The
estimated heat flux distribution shows that only 6% of the thermal energy are lost
due to the radiation. The rest of the heat is carried away with the cooling water
through the crucible bottom and walls. As far as the heat exchange between the
two parts was underestimated, the 2D steady-state simulation predicted too high
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Fig. 2. Time averaged velocity and temperature distribution in Aluminium.

temperature difference between upper and lower vortexes, which is not confirmed
by experimental data.

2.2. Transient 3D simulation. 3D calculations were based on Large Eddy
Simulation (LES) turbulence modelling method, which can be described as a com-
promise between the solving of RANS equations and Direct Numerical Simulation
(DNS) [5].

The resulting time-average velocity field (Fig. 2) looks very similar to the
one predicted with 2D steady-state calculations, as well as quite good agrees with
experimental observations. However, 3D transient approach allows to model ac-
curately the heat transfer processes in such flows, where two or more recirculated
eddies are interacting. The calculated flow pattern at the each time-step is not
symmetrical, and simulation shows, that the flow is intensively oscillating. Those
oscillations provide convective heat transfer mechanism, which is possible to sim-
ulate numerically only using transient three-dimensional calculation techniques.
The time-averaged temperature distribution calculated with LES (Fig. 2) is more
homogeneous, than in case of 2D modelling and resembles the measured tempera-
ture field (Fig. 1). In the pictures series with temperature filed at the consequent
time-steps it can be observed how relatively cold melt masses from below penetrate
into upper vortex area and are dissolved there.
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Fig. 3. Time averaged velocity and temperature distribution in TiAl alloy.
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Fig. 4. Temperature oscillations on the axis measured in aluminium (left) and calculated for
TiAl alloy (right).

The 3D numerical investigations of TiAl melting process produced similar
results in terms of flow pattern (Fig. 3), although the meniscus height in this
case is lower due to the increased density of the material. The flow velocities
are slightly higher (average velocity at » = 0 is about 55 cm/s), therefore the
temperature distribution is more homogeneous, than in aluminium. Calculated
temperature oscillations have similar amplitude (3-4 K) as these measured in alu-
minium (Fig. 4). It should be taken into account here, that higher frequencies in
measured oscillations are “filtered” by thermocouple, while the time step in the
calculations was 0.01 s. Due to the noticeably higher R/H ratio of the melt shape,
the low-velocity zone exists in the middle of the bottom region, which may lead
to the thicker skull layer above the water-cooled base. Therefore, the modification
of the crucible’s geometry or load is considered as a possible way to improve the
efficiency of the process.

3. Conclusions. Measurements of the temperature and velocity fields in
the aluminium melting process in the cold crucible show typical recirculating flow
structure with an axial symmetry and with presence of intensive three-dimensional
flow field oscillations, which are responsible for effective mixing and temperature
homogenisation of the entire melt. The modelling results show, that only the 3D
transient LES is able to model correctly these heat and mass transfer processes.
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