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Introduction. When a current is passed through a stagnant solution be-
tween two horizontal electrodes, two states of the system can be observed: (1)
The solution remains stagnant in spite of the variation in its density ρ near the
electrodes. The buoyancy forces are balanced by the viscosity forces. (2) The
buoyancy force initiates convective instability, the initially stagnant solution starts
to flow: a solution with a higher density, which forms near the upper electrode,
flows downward, and a solution with a lower density, which forms near the lower
electrode, flows upward. For the limiting-current mode, to the approximation of
solution electroneutrality, the problem of Rayleigh-Benard instability for a binary
electrolyte is equivalent to the problem of heat convection that has been much
studied [1, 2, 3, 4, 5]. In this case, only a monotonic convective instability can
arise [6]. In a solution with a more complex composition, an oscillatory instabil-
ity can arise along with the monotonic one. Several works were devoted to the
study of monotonic and oscillatory instabilities in electrochemical systems with
three types of ions [7, 8]. In these works, approximate solutions of the problem
for the cathodic deposition (anodic dissolution) of metal were obtained. Systems
with redox reactions were not considered in the literature. Moreover, the Rayleigh
numbers, which were used in these studies, differ from the commonly accepted
values. The problem of Rayleigh-Benard for heat convection in the magnetic field
was studied by Chandrasekhar [1]. In this work, we will theoretically analyze the
conditions of the onset of monotonic and oscillatory free-convective instabilities in
the solution with three types of ions with concentrations c1, c2, and c3, diffusion
coefficients D1, D2 and D3, and charges z1, z2 and z3, which is placed in the
space between two plane horizontal electrodes, taking into account the migration
transfer of a supporting electrolyte. The effect of applied magnetic field on the
onset of free convective instability is discussed.

1. Mathematical model. Within the theory of dilute electrolytes, in
the Boussinesq approximation, taking into account the electroneutrality of the
solution, the equations of incompressible viscous liquid flow and the ionic transfer
in the electrolyte layer between two horizontal electrodes can be written as follows

∂v

∂t
+ (v · ∇) = − 1

ρb
∇p + ν∆v +

1

ρb
i× b +

g

ρb
(ρ− ρb) , div(v) = 0 ,

∂c1

∂t
= D1∆c1 − v∇c1 ,

∂c2

∂t
= D2∆c2 +∇

[
Fz2D2c2

RT
∇ϕ

]
− v∇c2 ,

∂c3

∂t
= D3∆c3 +∇

[
Fz3D3c3

RT
∇ϕ

]
− v∇c3 , z1c1 + z2c2 + z3c3 = 0,

(1)

where b is the magnetic flux density vector, g is the gravity acceleration vector.
In the set of equations (1), the migration term in the transfer equation for

electroactive component (c1) is omitted; this is allowed at a high concentration of
the supporting electrolyte, i.e., at c2b � c1b.
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For a solution containing three types of ions, which is produced of two source
substances (for example, CuSO4 and H2SO4), the electrolyte density can be ex-
pressed in terms of concentrations of two types of ions, because the concentration
of ions of the third type is uniquely determined by the electroneutrality condition.
For the sake of definiteness, assume that the electrolyte density is expressed as
follows:

ρ− ρb =
∂ρ

∂c1
(c1 − c1b) +

∂ρ

∂c2
(c2 − c2b) (2)

Assume that the following reaction proceeds on the electrodes:

n1M
z1
1 + (z1n1 − z2n2) e←→ n2M

z2
2 (3)

Equation (3) describes both the redox reactions (n2 �= 0) and the reactions of
cathodic deposition (anodic dissolution) of metal (n2 = 0).

Minding the fact that the concentration of electroactive ions is relatively low,
we can eliminate the term with the gradient of electric potential from the transfer
equations. To do this, in accordance with [6, 7, 8], we introduce a hypothetical
concentration c4:

c4 =
n2D1

n1D2
c1 + c2 + c3 . (4)

Thus the set of equations (1) can be presented in the dimensionless form:

∂V

∂t
+

1

Sc1
(V · ∇) = −∇P + ∆V + Ha2 I×B + γRa1(C1 − 0.5 + C4 − C4b)

div(V) = 0; Sc1
∂C1

∂t
= ∆C1 −V∇C1; Sc1

∂C4

∂t
= D̄4∆C4 −V∇C4 + D̄∗∆C1

(5)

V
∣∣∣
Z=0, Z=1

= 0 , C1

∣∣∣
Z=0

= 0 , C1

∣∣∣
Z=1

= 1 ,
∂C4

∂Z

∣∣∣∣
Z=0, Z=1

= 0 (6)

where Ha = bH

√
χb

ρbν
is the Hartmann number; χb is the conductivity before the

current is switched on. H is the interelectrode distance, Ra =
2gH3c1bα

ρbνD1
is the

Rayleigh number. When we passed to the dimensionless variables, the following
relations were used:

X =
x

H
, Y =

y

H
, Z =

z

H
, T =

ν

H2
t, D̄4 =

D4

D1
, D̄∗ =

z3D
∗

αD1(z3 − z2)

∂ρ

∂c2

C1 =
c1

2C1b

, C4 =
z3c4

2αC1b(z3 − z2)

∂ρ

∂c2
, P =

H2

ρbνD1
p,

V =
H

D1
v, I =

H

D1χbb
i, B =

b

b
, b = |b| ,

(7)

where

D4 =
D2D3 (z3−z2)

z3D3−z2D2
, D∗ =

D1

D2

[
n2

n1
D1 − D3 (z3 − z2) + (D3 −D2) z1

z3D3−z2D2
D2 − n2−n1

n1
D4

]
.

The lower electrode is placed in the x–y plane, the z-axis is directed upwards.
To investigate the stability of the set of equations (5), it is necessary to ob-

tain a steady-state solution for a stagnant electrolyte and a set of equations for
small perturbations. The character of behavior of perturbations, which are al-
ways present in the electrochemical systems, enables one to determine whether
the steady state is stable or not. If small perturbations damp with time, the
system is stable; this is attributed to the absence of convection. Otherwise, the
system is unstable and, hence, electrolyte flow will arise.
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2. Steady-state solution for the stagnant electrolyte. We will ex-
amine the stability of the steady-state solution of (5). To do this, the behavior
of the system under the action of small perturbations C̃1, C̃4, Ṽ, P̃ . Taking
into account only the terms, which are linear in the perturbations, we obtain the
following set of equations for the disturbed state:

∂Ṽ

∂T
= −∇P̃ + ∆Ṽ + Ha2 Ĩ×B + γRa1(C̃1 + C̃4), div(V) = 0

Sc1
∂C̃1

∂T
= ∆C̃1 − Ṽz, Sc1

∂C̃4

∂T
= D̄4∆C̃4 + D̄∗∆C̃1

(8)

A solution for the set of equations (8) is sought in the form of normal perturba-
tions:

ṼZ(X, Y,Z, T ) = w(Z) eλT+i(kXX+kY Y )

C̃1(X, Y, Z, T ) = e1(Z) eλT+i(kX X+kY Y )

C̃4(X, Y, Z, T ) = e4(Z) eλT+i(kX X+kY Y )

(9)

To eliminate the pressure from flow equations (8), we apply rot rot to (8) and
project the equations thus obtained onto the z-axis. Substituting perturbations
(9) into thus transformed (8), we obtain:

λ(w′′ − k2w) = w′′ − 2k2w′′ + k4w−
− Ha2(w′′ sin2 α + 2ik1w

′ sin α cos α− k2
1w cos2 α

)
k2Ra1(e1 + e4)

λSc1e1 = e′′1 − k2e1 − w

λSc1e4 = D̄4

(
e′′4 − k2e4

)
+ D̄∗(e′′1 − k2e1

)
,

(10)

where quantities differentiated with respect to z are primed, α is an angle between
the magnetic field and the electrodes. The boundary conditions for amplitudes of
perturbations of concentrations and vertical component of hydrodynamic velocity
are expressed as follows:

e1(0)=e1(1)=0, e′4(0)=e′4(1)=0, w(0)=w(1) = 0, w′(0)=w′(1) = 0 . (11)

To solve the set of amplitude equations (11) with boundary conditions (12), the
approximate analytical Galerkin method is used.

3. Approximate analytical solution by the Galerkin method. The
set of equations (10) will be solved using the Galerkin method [3]. For the func-
tions w(Z), e1(Z), e4(Z), the following approximations satisfying the boundary
conditions will be used:

w(z)=Z2(1− Z)2w0, e1(z)=Z(1−Z) e10, e4(z)=Z2(1−z)2 e40. (12)

Here e10, e40, and w0 are the amplitudes of perturbations of concentrations and
hydrodynamic velocity that are independent of coordinates and time.

As a result of application of the Galerkin method with approximating func-
tions (12), the following set of equations for the perturbation amplitudes is ob-
tained: [

λ(k2 + 12) + k4 + 24k2 + 504 + Ha2(12 sin2 α + k̄2
1 cos2 α)

]
w0+

+
9k2Ra1

2

(
e10 +

2

9
e40

)
= 0

(
λSc1 + k2 + 10

)
e10 +

3

14
w0 = 0, e40 = − 3D̄∗ (

3k2 + 28
)

2
[
Sc1λ + D̄4(k2 + 12)

] e10

(13)

The monotonic instability corresponds to λ = 0. Then, from the condition of
zero determinant of homogeneous set of equations (14), we obtain the following
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Fig. 1. The effect of magnetic field on the critical Rayleigh number for the onset of oscillatory
(1, 2) and monotonic (3, 4) instabilities (1) D4 = 1, D∗ = 1, Ra(0) = 3676; (2) D4 = 1, D∗ = 0.1,
Ra(0) = 1942; (3) D4 = 1, D∗ = 0.8, Ra(0) = 5783; (4) D4 = 1, D∗ = 1, Ra(0) = 12763.

equation for the Rayleigh number:

Ra1 =
28

(
k4 + 24k2 + 504 + Ha2(12 sin2 α + k̄2

1 cos2 α)
)(

k2 + 10
)

27k2
· 1

1− 3k2+28
3k2+36

D̄∗
D̄4

(14)

The oscillatory instability corresponds to Re(λ) = 0, Im(λ)2 = ω2 > 0.
Using the same condition of zero determinant of homogeneous set of equa-

tions (13), the equation for the Rayleigh number for oscillatory perturbations can
be obtained. Then, using the fact that the Schmidt numbers are high for elec-
trochemical systems, we obtain an approximate equation for the critical Rayleigh
number for oscillatory perturbations:

Ra1 =
28

(
k4 + 24k2 + 504 + Ha2(12 sin2 α + k̄2

1 cos2 α)
)[

D̄4

(
k2 + 12

)
+ k2 + 10

]
27k2

(15)

provided that ω̄2 =
D̄∗(3k2+28)[D̄4(k2+12)+k2+10]− 3D̄2

4(k2+12)2

3 > 0.
The Rayleigh numbers for the monotonic (14) and oscillatory (15) instabilities

depend on the wavenumber k.
The critical Rayleigh numbers are defined by minimizing the right-hand sides

of equations (14) and (15) with respect to k.
Fig. 1 shows the effect of magnetic field on the critical Rayleigh number for

the onset of oscillatory (1, 2) and monotonic (3, 4) instabilities.
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