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Introduction. There is an ample paleomagnetic evidence that the Earth’s
magnetic field has reversed its polarity many times. The last reversal occurred
approximately 780000 years ago.The mean rate of reversals varies from nearly
zero during the Permian and Cretaceous superchrons to approximately 5 per Myr
in the present. Some observations suggest that the decay of the dipole of one
polarity might be much slower than the following recreation of the dipole with
opposite polarity [1]. Observational data also indicate a possible correlation of
the dipole moment with the persistence time of the field in one polarity [2]. In a
recent paper, a bimodal distribution of the dipole moment has been hypothesized
[3]. Although some of the above mentioned features are controversially discussed in
the literature, it is worthwhile to ask if and how they could be modeled by theory.
With view on the successful dynamo experiments in Riga and Karlsruhe [4], one
could extend this question and ask what would be the most essential ingredient for
a dynamo experiment to exhibit irregular reversals in a similar way as the Earth’s
dynamo does.

Thus motivated, we focus in this paper on a very generic mechanism of field
reversals and study it in detail by means of an extremely simple dynamo model. It
is well known that the non-self adjoint dynamo operator can provide transitions be-
tween non-oscillatory and oscillatory eigenmodes. Typically, this transition occurs
at the so-called ”exceptional points” [5] of the spectrum, where the eigenvalues and
the eigenfunctions of two non-oscillatory modes coalesce and continue as a pair of
oscillatory modes with complex conjugate eigenvalues. It is the goal of the present
paper to show that even within a very simple mean-field dynamo model the main
characteristics of reversals can be attributed to the magnetic field dynamics in the
vicinity of such exceptional points.

1. The model. We consider a simple mean-field dynamo model of the
α2 type with a spherically symmetric, isotropic helical turbulence parameter α [7].
The induction equation for the magnetic field B reads Ḃ = ∇×(αB)+(µ0σ)−1∆B,
with a magnetic permeability µ0 and an electric conductivity σ. Note that the
time scale µ0σR2 for theEarth is ∼ 200 Kyr, resulting in a free decay time of 20
Kyr for the dipole field. As usual, we decompose B into a poloidal and a toroidal
part, B = −∇ × (r × ∇S) − r × ∇T and expand the defining scalars S and T
in spherical harmonics of degree l and order m with the expansion coefficients
sl,m(r, t) and tl,m(r, t). For the envisioned spherically symmetric and isotropic α2

dynamo problem, the induction equation decouples for each degree l and order m
into the following pair of equations:
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Since these equations are independent of the order m, we have skipped m in
the index of s and t. The boundary conditions are ∂sl/∂r|r=1 + (l + 1)sl(1) =
tl(1) = 0. In the following we consider only the dipole field with l = 1. For
our purpose, we choose a particular radial profile α(r) (with a sign change along
the radius) that had been shown to exhibit the oscillatory behaviour [6]. This
kinematic α(r) profile is assumed to be quenched with the magnetic field energy
which can be expressed in terms of s1(r, t) and t1(r, t). In additionto that, we
introduce some noise, by which the α-profile is perturbed. Taken all together,
α(r, t) can be written as

α(r, t) = C
−21.5 + 426.4 r2 − 806.7 r3 + 392.3 r4

1 + E

[
2s2

1(r, t)
r2

+
1
r2

(
∂(rs1(r, t))

∂r

)2

+ t21(r, t)

] +

+ξ1(t) + ξ2(t) r2 + ξ3(t) r3 + ξ4(t) r4 , (3)

where the noise correlation is given by

〈ξi(t)ξj(t + t1)〉 = D2(1 − |t1|/τ)Θ(1 − |t1|/τ)δij .

C is a normalized dynamo number measuring the over-criticality, D is the noise
amplitude, and E is a constant measuring the mean inverse magnetic field energy.

2. Results. First, we consider the case without noise. Fig. 1 shows the
magnetic field evolution according to equation system (1)–(3) for D = 0 and
different dynamo numbers C. The nearly harmonic oscillations for C = 1.1 become
more and more ”shark-fin”-shaped for increasing C, with a pronounced asymmetry
between the slow field decay and the fast field recreation during the reversal. At
the critical point C = 1.27893 a transition to a steady dynamo occurs.

In order to understand this behaviour, we illustrate in Fig. 2 the evolution
of the magnetic field (s(r) in Fig. 2a, t(r) in Fig. 2b, together with the quenched
profile α(r) (Fig. 2c). In these plots, K always denotes the kinematic dynamo
with an unquenched α(r) profile. Numbers 1–8 refer to the snapshots during the
reversal that were specified in Fig. 1. From Figs. 2a and 2b we see how the magnetic
field is reversing between snapshots 1 and 8. Fig. 2c shows that the profile α(r)
changes only slightly during the reversal and that the quenching is concentrated
on the inner part of the sphere. At instant 5 it is very close to the kinematic
(K) profile, while at instants 1 and 8 it feels the strongest quenching. Fig. 2d
deserves more explanation. It shows the instantaneous growth rate which would
result from the individual α(r) profiles at snapshots 1–8, and from the unquenched
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Fig. 1. Magnetic field evolution for D = 0 and various values of C. ”Field” means s(r = 0.95).
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Fig. 2. Explanation of the field dynamics for C = 1.2789.

(kinematic) α(r) profile K. In addition to the growth rates at the actual dynamo
number C = 1.2789, we have plotted the growth rate curves in the interval between
0.7 < C < 1.4. Only for the kinematic case, we have plotted the branch of the
second eigenvalue (K2) in addition to the first eigenvalue (K1), both as thick lines.
At the exceptional point (the leftmost E) both branches coalesce and continue
as a pair of complex conjugate eigenvalues until a second exceptional point E′,
where they split off again and continue as two separate real eigenvalues. For all
other curves, only the exceptional point is indicated by E, whereas the branch
of the second eigenvalue has been omitted. In this framework, a reversal can be
described as follows: at instant 1, the growth rate ”sits” close to the maximum of
the non-oscillatory branch, which is slightly below zero. The resulting slow field
decay accelerates itself, because the system moves down (snapshot 2) from the
maximum of the real branch to the exceptional point. Then the system enters the
oscillatory branch (3, 4, 6), with a short intermezzo in the upper non-oscillatory
branch (5), which is, however, not essential for the reversal mechanism. Finally,
the system moves back again (7, 8) but with the opposite polarity. The critical
point C = 1.27893 is characterized by the fact that the maximum of the non-
oscillatory branch crosses the zero growth rate line. Beyond this point, the field
is growing rather than decaying, leading to a stable fixed point somewhere to the
right of the maximum of the non-oscillatory branch, and hence to a non-oscillatory
dynamo (cf. the case C = 1.3 in Fig. 1).

The role of the noise is simply to weaken the sharpness of the critical C. Even
above the critical value of C, the noise can trigger a transition to the right of the
maximum from where the described reversal process can start (Fig. 3).

3. Conclusion. Here, and in more detail in [8], we have shown that a
simple α2 dynamo model exhibits a number of features, which are typical for the
Earth’s magnetic field reversals, namely, an asymmetric shape of the reversals, a
bimodal field distribution, and correlation of strong fields with long persistence
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Fig. 3. Time series for C = 1.3 and varying intensities of the noise D.

times. We do not claim that our model is an appropriate model of theEarth,
although the sign change of α(r) along the radius is not unrealistic [9]. However,
it seems worthwhile to try to identify similar reversal scenarios in more complicated
models. The gained insight into the important role of spectral exceptional points
for the field reversal mechanism might help us to construct dynamo experiments
that show reversals, too.
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