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Introduction. The theory of large-scale (mean field) and small-scale (tur-
bulent) dynamos is mainly developed separately. The interaction of these two
dynamo mechanisms in real astrophysical systems is a poorly developed topic.
Very high values of hydrodynamic and magnetic Reynolds numbers make impossi-
ble relevant direct numerical simulations. Some progress in modelling of turbulent
MHD-dynamo has been achieved recently using the shell models of turbulence,
which also do not describe the turbulent dynamo in all details but allow to repro-
duce many intrinsic features of the dynamo action in a fully developed turbulence
of conductive fluids. It is suggested to combine the mean-field description of large
scale dynamo with a shell description of small scale turbulence in a large range
of scales. First attempt was done for an α2-dynamo with the prescribed spatial
structure of the large-scale poloidal end and a toroidal magnetic field was consid-
ered [1]. We have developed this idea for the case of the αΩ-dynamo in a thin
disc taking into account the evolution of the profile of large-scale fields across the
disc. The model allows to keep the balance of energy and helicity of the mean and
turbulent fields and the flux of these quantities. The suggested approach gives a
possibility to study the role of magnetic helicity in the generation process.

1. Model . We consider mean-field magnetic field generation subjected
to the joint action of helical turbulence and differential rotation in a thin galactic
disc. We use cylindric coordinates r, φ, z and measure the length in units of
the disc half-thickness, i.e., 0 ≤ z ≤ 1, and we presume that the disc radius is
much larger than the disc thickness. Considering a quadrupole magnetic field of
axial symmetry, one gets the following set of mean-field equations and boundary
conditions

∂tA = αB + β∂2
zzA, (1)

∂tB = −D∂zA + β∂2
zzB (2)

∂zB(0) = 0, B(1) = 0, ∂zA(1) = 0, A(0) = 0. (3)

Here B is the toroidal magnetic field, A is the toroidal component of the vector-
potential responsible for the poloidal magnetic field and D is the so-called dynamo
number D = Gα0 h3/β2

0 , here α0, β0 are the characteristic values of α and β,
G = r∂rΩ is a measure of differential rotation.

To describe the generation of a small-scale magnetic field and its interaction
with the turbulent motion, we used a shell-model of MHD-turbulence, introduced
by Frick and Sokoloff [2]

dtUn = ikn(Λn(U, U, a) − Λn(B, B, a)) − Re−1k2
nUn + fn + Fn, (4)

dtBn = ikn(Λn(U, B, b) − Λn(B, U, b)) − Rm−1k2
nBn + gn, (5)

Λn(X, Y, c) = c1X
∗
n+1Y

∗
n+2 + c2X

∗
n−1Y

∗
n+1 + c3X

∗
n−2Y

∗
n−1.

Equations are written in the dimensionless form, Re is the Reynolds number,
Rm is the magnetic Reynolds number, dt is the time derivative. The time unit
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is defined as the turnover time of the vortex on the largest turbulent scale T =
L0/U0. If a1 = 1, a2 = −1/4, a3 = −1/8, b1 = b2 = b3 = 1/6, then Eqs. (4)–(5)
conserve in the limit Re, Rm → ∞ three quadratic quantities, which correspond
to three integrals of motion known in magnetohydrodynamics: the total energy
E = EU + EB (where EU =

∑ |Un|2/2, EB =
∑ |Bn|2/2), the cross-helicity

Hc =
∑

(UnB∗
n + BnU∗

N) and the magnetic helicity Hb =
∑

(−1)n|Bn|2/kn). The
term Fn defines the forces, which provide the turbulent flow, the terms fn and gn

describe the interactions of the mean field and turbulence.
The key point is the conjugation of a mean field and a turbulent fields. We

consider the z-depending α in the form

α = sin(πz)(αh + αm), (6)

which includes the hydrodynamic and the magnetic parts of the α-effect. The
numerical coefficients are taken from [3]. αh, αm are defined by the hydrodynamic
helicity χh and by the current helicity χc, calculated from the shell model as well
as the turbulent diffusivity β:

αh = −1
3

∑
n

τnχh = −1
3

∑
n

τn(−1)nkn|Un|2 = −1
3

∑
n

(−1)n|Un|, (7)

αm =
1
3

∑
n

τnχc =
1
3

∑
n

τn(−1)nkn|Bn|2 =
1
3

∑
n

(−1)n|Bn|, (8)

β =
1
3

h

l

∑
n

k−1
n |Un| + βOhm, (9)

where βOhm = 1/Rm is the Ohmic dissipation.
The choice of forces fn and gn provides the total energy conservation (however,

we ignore the contribution to magnetic energy from differential rotation, i.e., we
consider the differential rotation as an unlimited source of energy). It means that
these forces have to compensate the energy input, provided by the α-effect. We
suggest that the corresponding energy should be removed from the shells, which
provide the helicity of dominating sign. Namely, the energy produced by the
hydrodynamic and magnetic α-effects are, correspondingly

∆Eh = 2
∫ 1

0

∂A

∂z

∂(αhB)
∂z

, ∆Em = 2
∫ 1

0

∂A

∂z

∂(αmB)
∂z

(10)

and the force fn = 0 for even shells and

fn =
Un∆Eh

EU
(11)

The expressions for gn are similar (then ∆Em, EB and Bn are used).

2. Numerical results. The integration has been done using the fourth-
order Runge-Kutta method with adaptive time step, using Re = 107, Rm = 104.
The turbulence was excited by a force with a fixed amplitude and random face in
two largest shells. The shell model includes 20 shells (n = 0, . . . , 19). The initial
large-scale field was taken in the form

A(0, z) = 10−3 sin(
π

2
z), B(0, z) = 0 (12)

and the initial values of Un, Bn were defined as a weak white noise.
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Grid-shell model of turbulent disc dynamo
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Fig. 1. Large scale magnetic field decay (thick black line – the toroidal field; thick grey line –
the poloidal field) in the case D = −1 (left) and D = −100 (right) when only the hydrodynamic
α-effect is taken into account. Thin gray line – small-scale kinetic energy, thin black line –
small-scale magnetic energy.

The numerical solutions of the model reproduce many features of the magnetic
field dynamo. So, the large-scale field decays for an insufficient large dynamo
number (Fig. 1, left). If the dynamo number is large enough, the generation of a
large-scale magnetic field in the fully developed turbulence from a random seed
field can be seen (we show in Fig. 1, right the case D = −100 when only the
hydrodynamic α-effect is taken into account). Then the saturation arises with
a strong domination of the toroidal field. The dynamo process near the oretical
threshold D ≈ −7 is not stable. For the case D = −20, the generation can be
stopped temporary (see Fig. 2,( top) due to quenching of the α-effect. After such
minima the global field inversion becomes possible (see Fig. 2,( bottom).
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Fig. 2. The energy evolution for D = −20 when only the hydrodynamic α-effect is taken into
account. Top: thick black line – toroidal field; thick grey line – poloidal field; thin black line –
small-scale velocity field; thin gray line – small-scale magnetic field. Bottom: the toroidal and
poloidal magnetic field evolution in the middle galactic plane.
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Fig. 3. The energy evolution for D = −200 with the full α-effect (6). Top: thick black line –
toroidal field; thick grey line – poloidal field; thin black line – small-scale velocity field; thin gray
line – small-scale magnetic field. Bottom: the toroidal magnetic field evolution in the middle
galactic plane.

If the magnetic α-effect is also included, the character of large-scale dynamo
is quite different (Fig. 3, bottom) – frequent decays of the large-scale magnetic
field alternate with strong bursts of dynamo activity. This effect of α-quenching
is related to the current helicity and has been recently discussed in many papers
(see, for example, [4]). One can see in Fig. 3 that the magnetic α-effect suppresses
the kinetic one when the large-scale magnetic field decays.

Note that we present here a method to combine a galactic dynamo model
for mean-field variables and a shell model for small-scale variables rather than a
model of magnetic field generation in a particular galaxy.
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