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Introduction. The phenomenon of permanent magnet levitation near the
non-deformable boundary of a magnetic fluid (MF) has been first discovered by
Rosenzweig [1]. In [2] analytic solutions for a cylindrical magnet inside a cylindrical
vessel have been obtained. In [3, 4] the formula for a magnetic force acting on a
spherical paramagnetic body and a spherical magnet immersed in the MF inside
a spherical vessel in an applied uniform magnetic field and a formula for a force
acting on those bodies near a plane that bounds the MF are obtained. In [4] an
analogy between the forces that act on a magnet and on a paramagnetic body
is proved and it is shown that the paramagnetic body levitation is possible in
elipsoidal vessels filled with the MF exposed to uniform magnetic fields. It is clear
that the paramagnetic body levitation may be implemented in a layer of the MF,
one boundary of which is a free surface. The force that acts on the body depends
on the deformation of this free surface and it is important to know the free surface
shape. In the present paper we consider the free surface shape of a MF layer,
containing a spherical body, in a uniform magnetic field. For some assumptions
this problem is solved analytically.

This work is supported by Deutsche Forschungsgemeinschaft (DFG, ZI 540/7-1)
and the Russian Foundation for Basic Research (project 05-01-04001-DFG) and
Grant Sci.Sc.-1481.2003.1.

1. Formulation of the problem. Let us consider a solid spherical body
(a is the body radius) made of a magnetizable material with a magnetic perme-
ability µb located in the center of the bottom of a cylindrical vessel (RV is the
radius of the vessel) filled with the MF (see Fig. 1). The parameters corresponding
to the body, the MF, the material surrounding the MF will be denoted by indices
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Fig. 1.
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b, f , s, respectively. The magnetic permeability of the fluid µf , the body mate-
rial µb and the material surrounding the MF µs are assumed to be homogeneous,
µf = const > 1, µb = const ≥ 1, µs = 1. An applied uniform magnetic field
H∞ has the vertical direction. Let us enter cylindrical and cartesian coordinate
systems z, ρ, θ and x, y, z with an index point in the center of the sphere. The z-
axis is directed upright hill up. In the considered case of cylindrical symmetry the
free surface shape can be presented as z = h(ρ) (ρ =

√
x2 + y2). The Maxwell’s

equations and the motion equation are expressed in the form rotH = 0, divB = 0,
B = µH, 0 = −∇p + ρg, pij = −pgij + HiBj/4π −HBgij/8π. The conditions on
the free surface of the MF and on the body surface r =

√
x2 + y2 + z2 = a are

z = h : {pijn
jei}s

f = −2σKn, {Bn}s
f = 0, {Hτ}s

f = 0,

r = a : {Bn}b
f = 0, {Hτ}b

f = 0 (1)

Here {A}i
j = Ai − Aj i, j = s, f, b, K is the curvature of the free surface,

2K = (h′′ + h′3/ρ + h′/ρ)/(1 + h′2)3/2. The expression for the fluid layer thickness
can be written as h = h0(1 + δ(ρ)). Here h0 = d− a, d is related to the volume of
liquid V = πR2

V d or fluid level near the wall.
We solve the problem using the following approximations: 1) non-induction

approximation: (µf − µs)/µf � 1; 2) long-wave approximation: h′ = h0δ
′ � 1;

3) linear approximation: δ � 1.
The non-induction approximation means that the distortion of the applied

magnetic field by the MF surface can be neglected and the applied homogeneous
field is distorted only by the body. Thus the potential of a magnetic field φ equals:
φ = H∞z + AzH∞/r3, r =

√
ρ2 + z2, A = a3α = −a3(µb − µf )/(µb + 2µf ). The

field on the free surface of the MF is easily calculated. Using the equation for the
free surface and condition δ � 1 the expression for the square of magnetic field on
the free surface can be written as:

H2(ρ, z = h) = D0+D1δ, D0 = 9A2h2
0H2

∞ρ2

(ρ2+h2
0)

5 +
(
H∞+ AH∞

(ρ2+h2
0)

3/2 − 3AH∞h2
0

(ρ2+h2
0)

5/2

)2

,

D1 = 9
(
− 10A2h4

0H2
∞

(ρ2+h2
0)

6 + 2A2h2
0H2

∞
(ρ2+h2

0)
5

)
ρ2

+2
(
H∞ + AH∞

(ρ2+h2
0)3/2 − 3Ah2

0H∞
(ρ2+h2

0)
5/2

) (
− 9Ah2

0H∞
(ρ2+h2

0)
5/2 + 15Ah4

0H∞
(ρ2+h2

0)
7/2

)

In non-induction and long-wave approximations the law of conservation of mo-
mentum on the free surface (1) in a projection to the normal is a linear differential
equation to define δ:

δ′′ + δ′/ρ + f0δ = f, f = C1 − (µf − µs)D0

8πσh0
, C = const,

f0 = − (ρf − ρs)h0g + (µs − µf )D1/(8π)
σh0

(2)

Further the gravity is neglected. There is the same effect, if ρ1 = ρ2. The estima-
tion of values demonstrates that they are the values of the same order. It is possible
to consider that f � f0δ as δ � 1. Therefore, f0δ from equation (2) is neglected.
It allows to obtain analytical solutions and to study the influence of a magnetic
field on the MF surface shape. Let us enter the dimensionless parameters:

M = −(µf − µs)AH2
0/8πσh2

0, rb = a/h0, ρ∗ = ρ/h0, S = (ρ∗2 + 1)1/2,
f∗ = −Mρ∗(4S + 2ρ∗2S − 4r3

bα − r3
bαρ∗2 − 2ρ∗4S)/S8 + C2ρ

∗

In the dimensionless form equation (2) is written as:

δ′′ρ∗ + δ′ = f∗(ρ∗, C2) (3)
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Fig. 2. Line – H = 0, points – H = 300 Oe, circles – H = 500 Oe.

Here A′ = ∂A/∂ρ∗. The equation contains an unknown constant C2 in f∗. If X =∫
f∗dρ∗, X0 = X |ρ∗=0, then δ =

∫
((X −X0)/ρ∗)dρ∗ +C3. The common solution

of equation (3), which satisfies the condition of axial symmetry δ′(ρ∗ = 0) = 0 is
the following:

δ =
2M√

(ρ∗2 + 1)
+

C2ρ
∗2

4
− 3Mr3

bα

8(ρ∗2 + 1)
+

3Mr3
bα ln(ρ∗2 + 1)

8
− Mr3

bα

8(ρ∗2 + 1)2
+ C3

2. Solutions of the problem. We have considered different require-
ments (boundary conditions on side walls of a vessel and others), which determine
the solution of the problem.

Fixed volume of the fluid. Let the volume of MF V be constant and known,
Θ be an angle of wetting of the fluid for side walls of a vessel. The parameter d is
determined from equation V = πR2

V d. There are conditions: ∂δ/∂ρ∗|ρ∗=RV /h0
=

cotΘ,
∫ RV /h0

0
2πρ∗δdρ∗ = 0, from which the coefficients C2 and C3 are determined.

At the following parameters h0 = d − a, d = 0.5 cm, a = d/3 cm, RV = 3 cm,
Θ = π/2.1, µb � µf , µf = 1.1, µs = 1, σ = 70 g/s2 the dependence of MF
thickness h0(1 + δ) + a and δ on the radius ρ for different magnetic fields are
shown in Fig. 2a, b. Here we calculate δ for an enough large angle Θ = π/2.1 (see,
Fig. 2b). In this case the parameter δ is not small.

Fixed level of a magnetic fluid near the wall of the vessel. After the magnetic
field application and the deformation of the MF free surface we add some quantity
of the magnetic liquid so that its level near the wall of the vessel is equal to d. In
this case the boundary conditions read as: δ |ρ∗=RV /h0= 0, ∂δ/∂ρ∗|ρ∗=RV /h0

=
cotΘ. The constants C3 and C2 are evaluated from these conditions. The constant

(a) (b)

Fig. 3. Line – H = 0, points – H = 200 Oe, circles – H = 300 Oe.
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Fig. 4. Line – H = 0, points – H = 300 Oe, circles – H = 500 Oe.

C2 is the same as for the case of fixed volume of the MF. The solution for the fixed
level of the MF near the wall of the vessel is different from the solution for the
fixed volume of the MF only in value of the constant C3. For the enough small
cotΘ = cot(π/2.01) (and at the following parameters d = 0.5 cm, a = d/3 cm,
RV = 3 cm, µb � µf , µf = 1.1, µs = 1, σ = 70 g/s2 the dependence of MF
thickness and δ on the radius ρ for different magnetic fields (at enough small H ,
H ≤ 300 Oe) are obtained (see, Fig.??a, b).

In this case and in the case of the fixed volume of the magnetic fluid we can
choose the parameters (angle of watering and magnetic field) so that the parameter
δ becomes small. Hence, the assumptions made in the given paper are valid.

Magnetic fluid under a thin elastic film. Let us consider the MF under a
thin elastic film. In this case the height of the MF near the side wall of the
vessel is constant and equals d and the volume of the MF is constant V = const:
δ |ρ∗=RV /h0= 0,

∫ RV /h0

0
2πρ∗δdρ∗ = 0. The coefficients C2 and C3 are defined

from these conditions. Here the coefficient C2 is different from C2 in the solutions
obtained above. For parameters d = 0.5 cm, a = d/3 cm, RV = 3 cm, µb � µf ,
µf = 1.1, µs = 1, σ = 70 g/s2 the dependence of MF thickness and δ on the radius
ρ for different magnetic fields are obtained (see, Fig. 4a, b).

Here the magnitude δ is equal to zero, if the field is absent and at enough
small fields the requirement of its smallness is satisfied.

Conclusion. The calculations have shown that for magnetic fields of 100 Oe
a noticeable modification of the shape of the surface happens. The obtained ana-
lytical solutions can be used for testing of numerical calculations.
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