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Introduction. Phenomena of spontaneous change of the shape of the mag-
netic fluid (MF) at a slow quasistatic change of system parameters are investigated
in papers [1, 2, 3]. Deformation of the MF drop along the wire carrying the current
is investigated in [1]. In [2] the jump of the MF to a permanent magnet as it slowly
approaches the fluid is studied. In [3] the behavior of the free surface of a bound-
less MF near the wire carrying the current is studied. There the phenomenon of
rapid jump of the ascension height of the fluid has been predicted and observed
in experiments. In the present paper the behavior of a drop between solid cylin-
ders in dependence on the current and the volume of the fluid is investigated for
all values. Hysteresis of the shape of such drop with the change of the magnetic
field is found: the drop breaks up in two drops arising on the inner wire and the
external cylinder as the magnetic field increases to critical value and these two
drops merge (or not merge) as the magnetic field decreases from the critical value
to zero.

This work is supported by the Russian Foundation for Basic Research (Projects
05-01-00375, 05-01-00839) and Grant Sci.Sc.-1481.2003.1.

1. Formulation of the problem. Consider the problem about an axially
symmetric profile z = z(r) of a MF drop located between solid cylinders with the
circular cross-section and radii Rc and r0, Rc > r0 (Fig. 1), r, ϕ, z are the cylinder
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Fig. 1. Magnetic fluid drop (a) before break-up (b) after break-up.
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coordinates. In the bulk of the smaller cylinder the current of intensity I is passing
in the wire. In order to neglect gravity, the MF contacts with a non-magnetic liquid
of the same density.

The magnetic field is determined by the formula H = (0, H, 0), H = 2I/cr.
The equilibrium equation for fluids and the law of momentum conservation for
their interface in projection on the outside normal have a form (parameters of the
nonmagnetic fluid and the MF are denoted by subscripts (i), i = 1, 2 respectively)

∂

∂xi
pij = 0, pij = −

(
p +

H2

8π

)
δij +

HiBj

4π
, p(1)

nn − p(2)
nn ± 2σK = 0 (1)

Here K is the mean curvature of the surface, σ is the surface tension of the
magnetic fluid. The sign ”+” is for the upper interface. In the case of axial
symmetry z = z(r), r =

√
x2 + y2, the curvature is determined by the relation

2K = (z′′ + 1
r z′ 3 + 1

r z′)/(1 + z′ 2)3/2. Let us introduce dimensionless parameters

r

r0
= r∗,

z

z0
= z∗, A =

2χI2

c2σr0
, B′ =

(p(2)
0 − p

(1)
0 )2r0

σ
, R∗

c = Rc/r0

A dimensionless equation for z∗(r∗) can be obtained from (1).

− A

r∗2
+ B′ =

z∗′′

(1 + z∗′2)3/2
+

1
r∗

z∗′

(1 + z∗′2)1/2
(2)

Furtheron, in superscript ”∗” at related parameters is omitted. The formula for
the upper profile of the interface results from (2):

z =
∫

G√
1 − (G)2

dr + D , G =
−A

r
ln r + Br +

C

r
(3)

2. Solution and discussion. It is easy to show that the relation G =
− cos(θ) is valid for the upper interface. Here θ is the angle between the cylinder
axis and the tangent to the line z = z(r) (referred to as counter-clockwise). Values
of the constants B and C are defined from the boundary conditions at the three
phase contact lines G(r = 1) = − cos(θ1), G(r = Rc) = − cos(θ2)

C = − cos(θ1) − B, B = (A ln Rc + cos(θ1) + cos(θ2)Rc)/(R2
c − 1) (4)

For the given wetting angles and the cylinder radii, there exists a critical value
of the parameter A, Ac = min A, at which the quantity |G| equals to 1 at some
point r, 1 < r < Rc. For example, at cos(θ1) = − cos(θ2) = 0.99 and Rc = 2,
Ac = 6.419523443, rc = 1.042605264, G(rc, Ac) = −1. It means that at A ≥ Ac

the equilibrium solution does not exist and the drop breaks up. At A < Ac

breaking of the initial drop in two parts occurs under a condition that its initial
volume V is equaled to V0 (V0 is a doubled volume of the liquid between the surface
z = z(r, A) and the plane z = zmin(A)). The value zmin(A) = z(r = rmin, A), rmin

is defined from the condition z′(r, A) = 0. The drop between the cylinders exists
if V > V0.

The dependence V0 = V0(A) has its minimum at A = Amin. Furtheron, the
variable V0 grows infinitely as A approaches the critical value Ac. It results from
such dependence that if the MF is placed between the cylinders in the absence
of the magnetic field (the volume of the drop V is larger than V0(A = 0)), then
the splitting of the drop in two parts occurs as V = V0(A) and the parameter A
achieves a value exceeding A = Amin. For certainty, let us consider the case A = 0,
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Fig. 2. Dependences: (a) constant B1 vs. rd1: 1 – A = 0.5; 2 – A = 1; 3 – A = 5; and (b) V1

vs. rd1: 1 – A = 0; 2 – A = 0.5; 3 – A = 0.73; 4 – A = 5.

V = 2.383711614. Calculations (for cos(θ1) = − cos(θ2) = 0.99 and Rc = 2) show
that the drop breaking in two parts for the volumes V1 = 1.59 and V2 = 0.79
occurs at A = 5. Subscripts 1 and 2 denote drops on the wire and on the external
cylinder, correspondingly. Further on a possibility of merging of these drops with
the decreasing A is considered.
Drop on the wire with the current. The equation describing the shape of the
drop on the wire with the current has a form

z =
∫ r

1

G1√
1 − G2

1

dr, G1 =
−A

r
ln r + B1r +

− cos(θ1) − B1

r
(5)

Here z is a function of r – the upper limit of the integral, which is confined by the
drop thickness rd1. Consider the case cos(θ1) = 0.99. It is shown that the relation
between the unknown constant B1 and the maximal radius of the drop rd1 can
be yielded from the equation G1(r = rd1) = −1. If there are several roots of this
equation, the root larger than 1 and nearest to 1 is chosen. Knowing rd1, we can
calculate B1 and the volume of the drop V1. Dependence B1 on rd1 at A = 0,
A = 2, A = 5 is illustrated in Fig. 2a.

It is shown that for small A < A1 = 0.7297722116 the dependence B1 on rd1

is increasing monotonously and one-two-one correspondent, see curve 1 in Fig. 2a.
At A1 < A < A2 = 1.144716816 this curve has two extrema, B1 < 0 and there
exists a region rd1, which cannot be obtained, see curve 2 in Fig. 2a. At A > A2 the
quantity B1 has a positive maximum, see curve 3 in Fig. 2a. The calculations show
that one-two-one correspondence is observed only at A < A1 and A > A2. For
intermediate values A1 < A < A2 the three values of the radius rd1 correspond to
one value of the volume. The dependence of the volume of the drop rd1 is presented
in Fig. 2b for various A at cos(θ1) = 0.99. Multivalence of the solution is shown
to be obtained at a sufficiently large volume of the drop V1 > V1c, V1c = 150. On
the other hand, the volume of the drop on the wire arising due to breaking of the
initial bridge at A = 5 is small enough, V1 = 1.593 < 150. Hence, the decrease
of the magnetic field (the parameter A) to zero results in a slight increase of the
drop thickness from d1(A = 5) = 0.049 to d1(A = 0) = 0.13.
Drop on the surface of the external cylinder. An equation describing the
shape of the second drop has a form

z2 =
∫ r

1

G2√
1 − G2

2

dr, G2 =
−A

r
ln r+B2r +

C2

r
, C2 = A ln Rc −Rc(B2 +cos(θ2))
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Fig. 3. Dependences: (a) B2 vs. rd2: 1 – A = 0, 2 – A = 2; 3 – A = 5; and (b) V2 vs. rd2:
1 – A = 0, 2 – A = 2; 3 – A = 5.

Here z is a function of r (the upper limit), which is restricted below by the value rd2,
rd2 < r < Rc. Consider the case cos(θ2) = −0.99 and Rc = 2. Knowing the root
of the equation G2(r = rd2) = 1, we can obtain a relation between the unknown
constant B2 and rd2 B2 = −(−A ln(rd2)+ A ln(Rc)− cos(θ2)Rc − rd2)/(r2

d2 −R2
c).

Dependence of B2 on rd2 at A = 0, A = 2, A = 5 (at cos(θ2) = −0.99 and Rc = 2)
is presented in Fig. 3a.

It is found that the dependence B2 on rd2 is decreasing monotonously and
one-two-one correspondent for any A > 0. The function V2 in dependence on rd2

has a maximum for certain values of the parameter A, see curve 3 (A = 5) in
Fig. 3b). It is meas that at A = Acr 2(V2) the drop on the external cylinder breaks
up in two drops or becomes a drop between two cylinders. For our problem the
volume of the drop on the external cylinder is equal to V2 = 0.79. The dependence
of the drop thickness d2, d2 = Rc − rd2, on the parameter A (the magnetic field)
is monotonous: as the parameter A decreases from 5 to 0, the drop thickness
decreases from 0.06445 to 0.06153. It is seen that switching off the magnetic field
does not make the drops merge; d1 + d2 = 0.197 < Rc − 1 = 1.

Conclusion. It is shown that a sufficiently small MF drop placed between
two cylinders breaks up in two drops arising on the inner wire and on the external
cylinder, as the magnetic field increases. These drops do not merge at decreasing
of the magnetic field to zero. It means that a specific hysteresis of the shape can
be observed as the magnetic field increases and decreases. It is found that the
dependence of the drop volume on the wire on the drop thickness is many-valued
for some parameters of the problem. This results in hysteresis behavior of the
drop thickness at the subsequent increasing and decreasing of the magnetic field.
It is shown that the drop located on the external cylinder can exist only if the
magnetic field does not exceed some critical value, and there is no hysteresis if the
field is less than this critical value.
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