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A magnetic field rotating on the free surface of a ferrofluid layer is shown to induce a
considerable fluid motion towards the direction the field is rolling. The measured flow
velocity i) increases with the square of the magnetic field amplitude, ii) is proportional to
the thickness of the fluid layer, and iii) has a maximum at a driving frequency of about
3 kHz. The pumping speed can be estimated with a two-dimensional flow model.

Introduction. Polarizable fluids can show a macroscopic reaction to exter-
nal electric or magnetic fields. While for most fluids the influence of a magnetic
field is fairly weak, colloidal suspensions of magnetic particles – the so-called Fer-
rofluids – do show a strong response particularly to static magnetic fields [1]. If
these fields are time-dependent, a rich variety of phenomena occurs. The inter-
nal rotation of magnetization in an externally rotating magnetic field gives rise
to nontrivial effects [2, 3]. A particularly interesting example is the driving of a
macroscopic flow by means of an external rotating magnetic field [4], because it
should allow for a very fine tuning both of the speed and of the direction of the
flow even in microscopic channels [5].

1. Experimental setup. We present a novel magnetic fluid [6] in an
open flow geometry designed for a quantitative comparison between the measured
flow velocity and its theoretical estimation. It is scetched in Fig. 1a).

A circular Macrolon� duct with a mean diameter d of 100mm and a square
cross-section of 5mm × 5mm (and 2.5mm × 2.5mm in a second set of measure-
ments) is filled brimful with a magnetic fluid [6] with a viscosity η = 5.4 · 10−3

Pa s. The orientation of the two coils producing a rotating magnetic field is also
indicated in Fig. 1a: one coil is wrapped around this circular channel and provides
a magnetic field in the azimuthal direction, and the outer coil produces the verti-
cal component of the field. Both coils are driven with an ac-current with a phase

(a) (b)

Fig. 1. (a) Experimental setup. The arrows indicate the direction of oscillating magnetic
fields provided by the coils. (b) The magnetic susceptibility as a function of the frequency of the
external alternating magnetic field. Here the real and imaginary parts are denoted by squares
and circles, respectively.
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difference of 90o, thus producing a rotating field on the free surface of the fluid
within the duct.

The characterization of the magnetic susceptibility of the fluid in the duct is of
primary importance for the pumping of the fluid, as discussed in this paper. It has
been measured as a function of the frequency of an external oscillating azimuthal
magnetic field by means of a pick-up coil placed into the liquid. Precisely speaking,
the magnetization was determined from the difference of the signal detected by the
pick-up coil in an empty and a filled channel, under the influence of an oscillatory
azimuthal field. The results are presented in Fig. 1b. The measured susceptibilities
of this novel cobalt-based fluids are fairly large compared to the more common
magnetite-based fluids. In particular, the large imaginary part of the susceptibility
is essential for the pumping action described in this paper.

2. Experimental results. The pump does work: a rotating field pro-
duced by the coils leads to a motion of the fluid in the azimuthal direction of the
channel [7]. It’s velocity is of the order of mm/s and can thus be determined by
visual inspection of tracer particles swimming on its surface. The following obser-
vation is also a qualitative one: when changing the phase difference between the
ac-fields from +90o to −90o, the flow changes its sign. The flow direction is such
that the vorticity of the flow field is locally parallel to the rotation vector of the
magnetic field, i.e., the fluid flows towards the direction the field is rolling.

For quantitative measurements it is necessary to use particles which are small
compared to the channel width (dandruff, diameter about 1mm). The velocity is
defined by taking the time a particle needs to travel a few centimeters. The size
dependence of these measurements is taken into account by using the numerically
calcultated – roughly parabolic – velocity profiles, and by assuming that a floating
particle represents the mean speed with respect to its diameter. A result obtained
for a fixed frequency of 1 kHz is presented in Fig. 2a, where the maximal flow
velocity within the channel is shown as a function of the amplitude G0 of the
driving external magnetic field. The velocity increases proportional to G2

0, as
demonstrated by the solid line, a parabola. Here we follow the nomenclature of
Ref. [8], where the external magnetic far field is marked by G and the local one
by H.

Having demonstrated this quadratic dependence of the velocity on the mag-
netic field, a first approach to collapse data obtained at different fields is to intro-

(a) (b)

Fig. 2. (a)Maximal velocity measured as a function of the field amplitude at a fixed frequency
of 1 kHz. (b) The reduced velocity u as a function of the driving frequency. Solid circles (open
squares) are obtained in the 5mm × 5mm (2.5mm × 2.5mm) duct, respectively. The solid line
represents the value expected on the basis of the measurement of the ac-susceptibility.
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duce a reduced velocity by dividing by the square of the external field. Another
important influence determining the fluid velocity is the height of the channel: it
turns out that the velocity is larger in bigger channels. This leads us to reduce
the velocity also by dividing by the height L of the duct. In order to get a di-
mensionless number, one also has to scale with the viscosity of the fluid. Thus we
define

u = vmax
η

Lµ0G2
0

(1)

as a reduced flow velocity. Its measured values are presented as a function of the
driving frequency of the rotating magnetic field in Fig. 2b), for velocities obtained
in a 5mm × 5mm and a 2.5mm × 2.5mm duct. Both measurements show the
maximum of this velocity in the range of 2–4 kHz.

3. Interpretation. The pumping action can be understood as a mani-
festation of the magnetic stress acting on the magnetized fluid, as summarized in
[9]. This assumption explains all qualitative features of the observation: as long
as the magnetization is proportional to the magnetic field (which has been mea-
sured to be the case for our fluid, within a precision of 5% for fields up to about
1500Am−1), the stress must be proportional to G2 as demonstrated in Fig. 2a). If
the frequency approaches zero, the magnetization and the field are parallel to each
other, the tangential stress is zero and thus the motion of the fluid stops. For finite
frequencies the velocity is proportional to the χ′′ component of the susceptibility,
which must increase linearly (to lowest order) with the frequency. For higher fre-
quencies, the imaginary part of the susceptibility χ′′ has a maximum at about
1 kHz, which explains that the maximal pumping velocity is observed around that
frequency.

For the quantitative calculation we solve the Laplace equation for the velocity
field including the no-slip condition for the fluid at the bottom and the side walls
of the duct. At the upper surface of the fluid the magnetic stress provides the
boundary condition

η
∂v

∂z
=

µ0

2
(MzHx − MxHz), (2)

because Eq. (65) of Ref. [9] is applicable to our geometry.
Both field components Hx and Hz and the corresponding magnetization Mx

and Mz are not constant in our case, but depend both on time and space. By
numerical computations of the internal field H and the resulting magnetization
M = χH we get for the maximum fluid velocity in the middle of the upper surface

vmax = χ′′µ0G
2
0

2
L

η
α

(
1 + Neffχ′

(1 + Neffχ′)2 + (Neffχ′′)2
)

. (3)

Here Neff denotes an effective demagnetization factor and α is a reduction fac-
tor due to the given geometry depending on the aspect ratio a = Ly/Lz of the
rectangular channel. In our case a = 1 and we obtain α ≈ 0.369.

In our square cross-section, the magnetization – and the ensuing stress at the
surface of the fluid – is not homogenous. We thus extract an effective demag-
netization factor Neff by fitting Eq. (3) to the numerically obtained velocity for
different values of χ. We obtain Neff ≈ 0.656, which seems realistic when compare
to N = 0.5 for the case of a circular cylinder.

From Eqs. (1), (3) we finally get a theoretical estimation for the reduced ve-
locity

u =
α

2
χ′′(1 + Neffχ′)

(1 + Neffχ′)2 + (Neffχ′′)2 (4)
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The limiting case of an infinitly wide channel (N = 1, α = 1) is included in this
formula.

The reduced velocity obtained from Eq. (4) is presented in Fig. 2b as a solid
line, with the values of χ′ and χ′′ taken from the measurements presented in
Fig. 1b. The agreement between the measured velocities and the solid line is on a
20% level. This can partly be attributed to the limited accuracy of the measure-
ment procedure, which is indicated by the error bars in Fig. 2b. The systematic
deviations between the data and the theoretical curve are believed to reflect the
precision of the simplifying assumptions going into the consideration presented
above. For example, the influence of the shape of the meniscus of the fluid adds
a three-dimensional complication to the problem, whose influence on the maximal
pumping speed is hard to estimate. Moreover, it should be noted that magnetic
fluids are not perfectly stable both in their magnetic susceptibility and their vis-
cosity, which might add to the small mismatch between the expectation based on
the measurement of the susceptibility and the measured velocity. Finally, taking
into account the small amplitude of the magnetic field, any magnetoviscous effects
have been neglected for the calculations.

In summary, the pump presented here works well and has an interesting po-
tential especially in small geometries, where a mechanical driving of the flow is
not possible. More important, it does seem safe to conclude that the ansatz of a
magnetic stress driven motion captures the essence of this pump on a quantitative
level.
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