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Introduction. The free interface dynamics in a Hele–Shaw cell obtained a
big interest recently from the point of view of the pattern formation phenomena.
Extraordinary rich phenomena occur in the Hele–Shaw cells with a magnetic fluid
[1, 2, 3]. The drops of magnetic fluid and bubbles in the Hele–Shaw cells filled with
it have the spectrum of instabilities leading to the formation of the labyrinthine
patterns [4, 5].

An interesting example of the complex dynamics of the free interface rises
when the bubble motion in the vertical Hele–Shaw cell with the magnetic fluid
is considered [6]. The problem of the bubble motion in the Hele–Shaw cell has a
rather long history. It was for the first time considered by Saffman and Taylor
in [7]. Preliminary qualitative numerical experiments illustrated that at magnetic
Bond numbers larger than the critical ones for the elliptic instability [6] two sta-
tionary families of steady shapes of the bubble, rising in the vertical Hele–Shaw
cell with a magnetic fluid, exist – a pear-like familt when the initial perturbation
is along the direction of the gravity force, and a bent dumb-bell one if the initial
perturbation of the bubble shape is perpendicular to it.

Investigation of the behavior of the steady families of the bubble shapes have
revealed several interesting peculiarities of their behavior – at some critical value
of the magnetic Bond number bifurcation phenomenon to the unsteady shape is
observed and the oscillatory bubble behavior is found.

1. Governing equations. The motion of the magnetic fluid surrounding
the bubble is described by the Darcy equation, where the action of gravitational
and magnetic forces is taken into account [6]

−∇p − αv +
2M

h
∇ϕm + ρg = 0 ; divv = 0 . (1)

Here α = 12η/h2 is the friction coefficient of the fluid in the Hele–Shaw cell of
thickness h, ϕm is the value of the magnetostatic field potential created by the
magnetic fluid on the boundary of the Hele–Shaw cell z = h. The pressure on the
interface of the bubble is given by the Laplace law

p0 = p + σk . (2)

The magnetostatic field potential created by the magnetic fluid outside the bubble
ϕm can be expressed through the magnetostatic potential of the droplet with the
shape of bubble ϕmd:ϕm = −2πMh − ϕmd, here ϕmd is

ϕmd = −M

∫ ∫ (
1√|ρ − ρ′|2 − 1√|ρ − ρ′|2 + h2

)
dS

′
, (3)

where integration is carried out in the region, which has the shape of a bubble.
The free interface dynamics is found from the kinematic boundary condition

dr
dt

= v
∣∣
Σ

. (4)
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Here k is the curvature of the interface in the plane of the boundary of the Hele–
Shaw cell, v

∣∣
Σ

is the velocity of the fluid on the interface of the bubble. Pressure
p0 inside the bubble is taken to be constant since the friction there is neglected.
To put problems (1), (4) in the dimensionless form, the following scales are intro-
duced: length – R – the radius of an unperturbed circular bubble, time – αR3/σ
– a characteristic capillary relaxation time of the bubble in the Hele–Shaw cell.
Equation (1) in the dimensionless form reads (gravity acceleration is directed in
the negative x-axis direction):

−∇p − v +
Bm

h̃2
∇ϕm − Bgex = 0 ; divv = 0 , (5)

where the magnetic Bond number Bm = 2M2h/σ, the gravitational Bond number
Bg = ρgR2/σ and the dimensionless thickness of the Hele–Shaw cell h̃ = h/R are
introduced. Tildes further are omitted.

2. Numerical simulation. Problems (1)–(4) possess the invariance prop-
erty allowing for arbitrary choice of the tangential component of the velocity on
the free interface [8]. Here it will be chosen to sustain the equal arc length be-
tween neighboring markers of the interface at its evolution in time. We are using
a contour dynamics approach for the motion of the free interface of the bubble.
According to it, the equations for the tangent angle ϑ

(
τ = (cosϑ, sinϑ)

)
and the

arclength of the contour are

ϑt = − 1
sp

Up +
T

sp
θp , (6)

stp = Tp + θpU , (7)

where the velocity on the interface v
∣∣
Σ

is given by Un+Tτ . To maintain the equal
arclength pacing between the markers contour arclength is given by s = L/2πp.
Then equation (7) gives

T (p, t) = T (0, t) +
p

2π

2π∫
0

θp′Udp ′ −
p∫

0

θp′Udp ′ , (8)

where the constant of integration T (0, t) is put equal to zero. The time evolution
of the interface is given by (6), (8). Since ϑ is not a periodic function of p its
linearly increasing part is excluded according to the relation θ = p + ϑ. As a
result,

Lt =

2π∫
0

(ϑp + 1)Udp (9)

ϑt =
2π

L

[
− Up + T (ϑp + 1)

]
. (10)

The second key idea of the numerical approach is a small-scale decomposition of
evolution equation (10), since the numerical stiffness arises due to small spatial
scales [8]. Differential equations (??) are solved using the fourth-order Adams–
Bashforth method [9].

3. Results of numerical simulation. The shapes established at long
time evolution in dependence on the magnetic Bond number are given in Fig. 1,
where the contour length of the interface in dependence on Bm is shown (in the
case of the oscillatory regime the maximal value of the contour length during the
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Fig. 1. The phase diagram of the bubble shapes Bg = 1, h = 1).

period is shown). We see that above the critical value of the elliptical instability
the bubble with the initial perturbation in the form of the second eigenmode
undergoes transition to the steady state having a pear-like shape. This shape
exists until the critical value Bmosc

c , which at the given value of h = 1 is about
14.8, when the transition to the unsteady state occurs. The branch of the pear-
like shapes exists until the critical magnetic Bond number 15.2 when an abrupt
transition to the bent dumb-bell shape occurs with a subsequent transition to the
oscillatory regime.

The bent dumb-bell branch of steady shape of the bubble exists in the range
of magnetic Bond numbers even below the critical value of the elliptical instability
as shown in Fig. 1. This hysteresis illustrates that the transition to the bent dumb-
bell shapes is the transition of the first kind. The bent dumb-bell shape with the
increased contour length exists for the values of magnetic Bond numbers Bm above
the critical ones. If this shape is perturbed, for example, by applying the gravity
force in the y-axis direction, it relaxes to a steady or an oscillating pear-like shape.
The dynamics of the bubble in oscillatory state for Bm = 16 (h = 1) is shown in
Fig. 2.

Although the oscillatory behavior of the bubble looks rather unusual we should
mention that such behavior was already noticed in several systems under the ac-
tion of external fields. In [10] the oscillatory behavior of the islands on the surface
induced by the electromigration is predicted basing on the local interface evolu-
tion model. The oscillatory character of the self-magnetic energy release by long

Fig. 2. Oscillatory dynamics of the bubble with a pear-like shape. Bg = 1, h = 1).
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wavelength perturbations at the magnetic microconvection is found in [11]. These
facts and our numerical simulation results show that the dynamics at the external
energy supply under the action of magnetic forces can be rather complicated. This
is the case for the system considered here when the regimes of the bubble motion
become rather complicated at the increase of the magnetic Bond number.

4. Discussion and conclusions. The dynamics of the rising bubble in
the vertical Hele–Shaw cell with the magnetic fluid is studied. Considering the
phase diagram of the bubble shapes it is found that two families of the steady
states of the bubbles at magnetic Bond numbers below the critical values exist –
pear-like shapes and bent dumb-bell shapes. For the latter a numerical evidence
supports its establishment by a subcritical bifurcation from the circular one. By
the finite amplitude perturbation it is possible to initiate the transition of a bent
dumb-bell shape to a pear-like one. As far as we know, it is for the first time when
the spiraling motion of the bubble in the low Reynolds number limit is found
although there are observations of the possibility of complex dynamics in different
systems under the action of external fields. This illustrates that the dissipation
processes in the presence of the self-magnetic field forces can be rather unusual and
complicated. We should mention that some qualitative experimental observations
resembling the results of our numerical calculations have already appeared [12].
This confirms the necessity of further experimental investigations of the dynamics
of the bubble in the Hele–Shaw cell with a magnetic fluid.
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