
The 15
th

Rigaand 6
th

PAMIR Conference on FundamentalandApplied MHD

Novel MHD problems and applications

CONDUCTING WALLS MHD ALTERNATE
GENERATOR AT A MODERATE

MAGNETIC REYNOLDS NUMBER

C.Vogin, A.Alemany
Pamir team, Laboratory LEGI, B.P. 53, 38041 Grenoble cedex 9, France

(Antoine.Alemany@hmg.inpg.fr)

Introduction The work is focused on an oscillating flow in a very long MHD
channel of rectangular cross-section and thin conductive walls (Fig. 1). The length
LB of the channel is much higher than the other dimensions, width 2l and thickness
2a, so it can be considered as infinitely long. The wall’s thickness ew of this channel
and its electrical conductivity σw are such than the thin walls hypothesis can
be assumed [1]. An incompressible liquid metal of density ρ, dynamic viscosity
µ, magnetic permeability µ0 and electrical conductivity σ flows in the channel
along the x-direction with a velocity amplitude u0 and a pulsation ω imposed
along the channel by an oscillatory pressure gradient with an amplitude ∆p/LB.
The oscillating pressure gradient is obtained by a thermo-acoustic effect that has
the potential of producing mechanical power from a heat source with no moving
part in a confined container. The principle is based on the use of a temperature
gradient imposed at both extremities of a stack of plates properly disposed in
a closed tube to create spontaneously a standing wave in the tube ([2] to [9]).
The oscillating pressure at both extremities of the MHD channel subjected to a
constant external magnetic field B0 = B0 · ey, imposed by an inductor, generates
an AC electric current resulting from the interaction of the imposed magnetic field
with the velocity field and collected by two electrodes placed in z = ±l (Fig. 1);
the electric current supplies a load assimilated here to a resistance R.

1. Formulation of the problem. The imposed pressure distribution all
along the channel, which is the motive term, is assumed to be of the form

p = p0 + Re
(

∆p

LB
x · eiωt

)
= p0 + Re

(
p1 · eiωt

)
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Fig. 1. Views of the MHD channel, the electromagnetic inductor creates a vertical magnetic
field, the current lines resulting from the interaction between the magnetic field and the flow are
collected by the electrodes.
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Complex numbers are only used by commodity, only the real part will be conserved
as physical meaning. The other variables are supposed to have the same pulsating
form

u = R(u0eiωt)

B = B0 + b = B0 + Re(beiωt)

With subscript o for the mean value. The mean value of the velocity is zero.
The induced magnetic field b is the perturbation of the imposed magnetic field.
By choosing the following characteristic: scales: a for the lengths, B0 for the
magnetic field, 1/ω for the time, ωa for the velocity, the scale for the electric

current density becomes
B0

µ0a
and the typical electric field ωaB0, consequently the

typical scale of the current is
B0a

µ0
and the electric resistance of the unit length of

the channel
1
σa

allows to define the typical scale of electrical power
B2

0a

µ2
0σ

. Taking

into account the main hypothesis and introducing the non dimensional variable
in the Navier–Stokes and linerised induction equations gives the dimensionless
governing equations

iu′∗ = −Kp +
1

Reω

∂2u′∗

∂y∗2 +
N

Rm
∂b′∗x
∂y∗ ib′∗x =

∂u∗

∂y∗ +
1

Rm
∂2b′∗x
∂y∗2

with Kp =
∆p

LBω2ρa
representing the dimensionless imposed pressure, u∗ and

b∗ respectively the dimensionless axial component of the velocity and induced
magnetic field. The main parameters, which control the phenomena, are: the

Reynolds number, Reω =
ρωa2

µ
, the magnetic Reynolds number Rm = µ0σωa2,

the Hartmann number Ha = B0a

√
σ

µ
, the interaction parameter N =

Ha2

Reω
=

B2
0σ

ωρ
.

2. Boundary conditions. The non slip conditions and symmetry of
velocity and induced magnetic field gives:

u∗(y∗ = 1) = 0,
∂u∗

∂y
(y = 0) = 0, b∗x(y = 0) = 0

A fourth condition is needed to specify the global solution. This last condition
results in closing of current density lines partially in the wall, partially in the fluid
flow and partially in the load resistance. Considering that the electric current
circulating channel, and taking into account the continuity of the electric current
which closes partially in the resistance, partially in the fluid and in the resistance
is imposed by the voltage drop at the both sides of the rectangular partially in the
walls, I∗ + I∗

′
+ i∗ = 0, provides the fourth boundary condition.

b∗x(y∗ = 1) =
K − 1

K

∂b∗x
∂y∗

(
y∗ = 1

)
, K =

1
1 + r

R + r
rw

is the load factor.

In this expression the ratio C = r/rw represents the conductance ratio of the fluid
and walls.
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Fig. 2. Electric efficiency versus
the Reynolds number for Rm =
0.01 and Rm = 0.33, insulating
walls, K = 0.5 and three values
for Ha. The curve form small Rm
and Ha = 500 (circles) fit well
the Ibanez work] (thick line). The
curve with Rm = 0.33 (bold line)
presents a decreasing of efficiency
around N = 1 at the transition
between the Hartmann regime and
the inertial regime.

3. Results and discussion. The problem admits an analytical solution
which is not given here due to the size and complexity of the two expressions of the
current density and velocity distribution. In the asymptotic case of high interaction
parameter and sufficiently far from the wall the two fields can be described by a
simplified expression:

u′∗ =
Kp

i + N(1 − K)
, b′∗x =

KpRm(1 − K)
i + N(1 − K)

The efficiency corresponds to the electric power extracted from the load reported
to the mechanical energy introduced in the system by the work of the pressure
forces. Since the electric circuit is assimilated to a load resistance R, the electrical
power Pe created to supply this circuit is simply the power dissipated by the Joule
effect in the resistance. The total efficiency of the system is then defined by:

ηe =
Pe

Pe + P1 + · · · + Pn
,

where P1 . . . Pn represents the sum of the losses due to the Joule effect and viscous
dissipation. The analytic solution allows to calculate all the properties of the
flow including energetical aspects. The comparison between the results of the
present work with the Ibanez’s work [11] reveals a very good agreement. It can
be observed, for example, in Fig. 2 that the evolution of the efficiency versus the
Reynolds number Reω for small Rm, K = 0.5, Ha = 500 and insulating walls
is very close to the Ibanez results. It can be seen that the efficiency is strongly
influenced by the magnetic Reynolds number and Fig. 3 shows that the efficiency
decreases when the conductance ratio increases.

4. Conclusion. This study has been focused on the characterisation of
an alternate MHD generator resulting from the use of the thermo-acoustic effect
to impose an oscillating motive pressure gradient. The effect of the wall conduc-
tivity has been taken into account and the solution searched for small or moderate
values of the magnetic Reynolds number. The role of the main parameters that
control the efficiency, i.e., the interaction parameter, the Reynolds number, the
magnetic Reynolds number, the load factor and the conductance ratio have been
analysed. The optimisation of the system is very hard and requires a special study.
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Fig. 3. Efficiency of the system
as a function of load factor K for
four conductance ratios (increasing
thickness), Cw = 0, Cw = 0.01,
Cw = 0.2 and Cw = 1. Dash line
represents the electric efficiency for
Cw = 0.

Nevertheless, some indications can be given; the best efficiency is obtained for a
relatively high value of the load factor (K ≈ 0.8), moderate value of the interac-
tion parameter in the inertia regime N > 1.5, and for the value of the magnetic
Reynolds number close to 1. It is important to notice here the influence of this
last parameter generally neglected in most of the studies.
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