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Introduction. Non-uniformities are commonly used to generate vorticity
in magnetohydrodynamic (MHD) flows. For instance, the use of solid obstacles in
the flow under uniform magnetic fields has been widely explored both theoretically
and experimentally to understand vortex formation and evolution [1, 2]. It is now
well confirmed that vortices created under a strong transverse uniform field have
the tendency to align their axes in the direction of the field, giving place to a quasi-
two-dimensional flow. Vorticity can also be created under uniform fields through
the expansion or contraction of duct geometry. Another interesting possibility of
vortex generation in channel flows under uniform fields is due to inhomogeneities in
the electrical conductivity of the walls, as has been demonstarted by Alpher etal [3]
and Bühler [4]. In particular, Bühler was able to show that the inhomogeneity in
the wall conductivity may generate internal shear layers that can become unstable
and lead to time dependent solutions similar to the Kármán street behind bluff
bodies.

On the other hand, it is also well known that vorticity can be generated due
to fringing magnetic fields. In fact, most of the investigations of flows in fringing
fields has been devoted to the analysis of duct flows with a field that varies in
the streamwise direction as it approximately occurs at the entrance or exit of the
poles of a magnet. In this case, current loops are elongated in the flow direction
giving rise to streamwise current density components that produce Lorentz forces
pointing towards the side walls. These forces are responsible for the creation of
M-shape velocity profiles with high side-layer velocitites [5, 6]. The strong shear
layers created by the non-uniform field remain confined by the side walls which
determine their evolution inside or outside the magnetic field. Actually, in channel
flows a non-uniform field acts as an electromagnetic brake, as those commonly used
in metallurgical applications. It is then possible to visualize a non-uniform field
as an obstacle for the flow and rise the question of how the flow evolution would
be in the absence of confining side walls. In experiments performed in a thin
electrolytic layer with a localized moving magnetic field, Honji and Haraguchi
[7, 8] demonstarted that the generation of vorticity in inhomogeneous magnetic
fields may lead to time-dependent flows with complex vortical structures. They
used a shallow layer of salt water contained in a long tank with an electric current
injected transversally to the tank axis. Either a couple or a single permanent
magnet located externally but close to the layer was moved at a constant velocity
along the center line of the water tank. In the far wake behind the region influenced
by the field, a wavy motion was observed depending on the velocity of the magnets
and the injected electric current [7]. Also, in a limited range of Reynolds numbers
and Lorentz force intensities, steady symmetric vortex pairs appeared in the near
wake. As the Lorentz force was increased, the symmetric vortex pair collapsed
to form an unsteady periodic flow [8]. Actually, the observed flows exhibit some
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features similar to those of ordinary flows around solid obstacles.
In this paper, we explore the interaction of uniform flows with inhomogeneous

magnetic fields. We are particularly interested in the evolution of shear layers
created by localized gradients of magnetic field. With this aim, we analyze the
flow of an incompressible electrically conducting viscous fluid past a localized zone
of applied magnetic field, denominated a magnetic obstacle. We introduce this
term both to describe the obstruction found by the fluid as it moves through a
zone of localized non-uniform field and to emphasize the analogy with the flow past
solid obstacles. In order to address the problem in a simplified way, we consider a
2D approach that retains the most important physical effects. The key issue is to
consider inertial effects in the analysis under the low magnetic Reynolds number
approximation. It is shown that the flow past a magnetic obstacle can develop
vortical structures and eventually instabilities that remind those observed in flows
interacting with bluff bodies.

1. Formulation. We consider a uniform two-dimensional flow of an elec-
trically conducting incompressible viscous fluid in a rectangular region, where a
non-uniform distribution of magnetic field is present. The applied field is produced
by a magnetized square surface uniformly polarized at the normal direction and
slightly underneath from the plane of flow. Therefore, the dominant contribution
of the applied field comes from the normal component. The area of this surface
is only a small fraction of the total flow domain. Due to its fast decay, the field
presents a high intensity only in a localized zone which is assumed to be distant
from the inlet/outlet region as well as from the lateral boundaries. At the en-
trance, a steady unidirectional flow with a uniform velocity profile, U , is imposed
in the x-direction. Far from the region of intense field the flow is undisturbed.
In the small zone, where the oncoming uniform flow encounters the non-uniform
magnetic field, electric currents are induced which, in turn, induce a field b, so
that the total magnetic field is given by B = B0 + b. We assume that the in-
duced field is much smaller than the applied field, b << B0, which means that
the magnetic Reynolds number, Rm = µσUL, is much less than unity. Here, µ
and σ are the magnetic permeability and the electrical conductivity of the fluid,
respectively, and L is a characteristic length to be defined below. Notice that the
fluid passing through the magnetic obstacle faces mainly four different regions of
fringing magnetic field. In a similar way as in the flow at the entrance/exit of a
magnet [5, 6], closed current loops are formed in the plane of flow upstream and
downstream of the applied field with clockwise and anti-clockwise current circu-
lation, respectively. However, since side walls are absent, current loops tend to
spread in the flow domain. The induced electric currents interact with B giving
rise to a non-uniform Lorentz force that brakes the fluid and creates vorticity.

1.1. Governing equations. Assuming that the only component of the ap-
plied field points in the z-direction, the dimensionless equations of motion under
the approximation Rm << 1, take the form
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where the subindex ⊥ denotes the projection of the ∇ operator on the xy plane.
Here the velocity components, u and v are normalized by U , the pressure p, by
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ρU2, the electric current density components, jx and jy, by σUBmax and the
applied field B0

z by Bmax, where Bmax is the maximum strength of the applied
magnetic field. Dimensionless coordinates x and y are normalized by L, while time
t is normalized by L/U . The dimensionless parameter Ha = BmaxL

√
σ/ρν and

Re = UL/ν are the Hartmann and Reynolds numbers, respectively, where ρ and
ν are the mass density and the kinematic viscosity of the fluid, respectively.

Maxwell equations in the quasi-static approximation can be combined to give
the induction equation [6]. In the two-dimensional case this equation reduces to a
single equation for the component bz, namely,
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where the induced magnetic field bz has been normalized by RmBmax. Since bz

is independent of the z-coordinate, the condition ∇ · b = 0 is satisfied. Once
b is determined, Ampere’s law ∇ × b = j gives an expression to calculate elec-
tric currents. This equation also guarantees that the electric current density is
divergence-free, ∇ · j = 0. Hence, the current density components are given by

jx =
∂bz

∂y
, jy = −∂bz

∂z
. (5)

Equations (5) show that the induced magnetic field serves as a stream function for
the electric current in the plane of flow. Therefore, lines of bz = const are current
streamlines.

1.2. Applied magnetic field. We use an analytic expression for the field
produced by a magnetized square surface uniformly polarized at the normal direc-
tion [9]. In dimensional terms, placing the coordinate system in the centre of a
rectangular surface with side lengths X0 = 2a and Y0 = 2b, the normal component
of the field produced by a single magnetized surface laying on the plane Z = Z0,
is given by
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z = αBmax
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, (6)

where B0
z stands for the dimensional applied magnetic field and α is a normalization

constant. For the sake of simplicity, we consider that the magnetized surface has a
square shape, that is, 2a = 2b = L. Therefore, L is taken as the geometrical length
scale used to non-dimentionalize the flow variables. Further, we consider that the
magnetized surface is located at Z = −L, that is, underneath the plane of flow.
With this assumption, border effects due to the square shape of the magnetized
palte are smoothed out in the plane of flow. Since in the 2D approximation the flow
is restricted only to this plane, the dependence on the z-coordinate is disregarded.
Equation (6) gives a symmetric distribution of the magnetic field with a maximum
value at the centre of the plate and with a rapid decay as the distace from the
centre grows.
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1.3. Boundary conditions. We assume that far away from the applied mag-
netic field, a steady uniform flow in the positive x-direction is imposed. With the
origin of coordinates located at the point of maximum magnetic field strength, the
boundary conditions on the velocity components are

u → 1, v → 0, as x, y → ±∞. (7)

It is obviously expected that the strength of the induced magnetic field is higher
near the zone where the applied field is strong. As the distance from the source
of the applied field grows, the induced field must decrease and vanish at infinity.
Therefore, it must satisfy

bz → 0, as x, y → ±∞. (8)

Further, both velocity components and induced magnetic field must in principle
remain finite at the origin.

2. Creeping flow solutions. We first look for solutions where the vor-
ticity transport is dominated by diffusion. Under these conditions a balance is
established among pressure, Lorentz and viscous forces and the flow displays only
steady laminar solutions.

2.1. Perturbation solution. With the aim at obtaining analytic solutions,
we first apply a perturbation approach. We simplify the equations of motion by
assuming that the flow is only slightly perturbed by the Lorentz force. Therefore,
the dimensionless velocity components can be expressed as

u = 1 + u′, v = v′, (9)

where u′ and v′ are the perturbations to the oncoming uniform flow due to the
presence of the magnetic obstacle. This approximation will be valid provided
that the Reynolds number is very small, namely, under creeping flow conditions.
Neglecting O(Rm) terms and assuming that u′, v′ � 1 in such a way their products
with the O(1) applied field derivatives can be neglected, the magnetic induction
equation (4) reduces to

∇2
⊥bz =

∂B0
z

∂x
. (10)

This equation is uncoupled from the velocity perturbations, therefore, at this ap-
proximation the induced field bz is created by the unperturbed uniform flow. To
find an analytic solution of equation (10) with the applied field given by (6) is a
complicate task. For the sake of simplicity, the applied magnetic field is approxi-
mated through a Gaussian distribution, namely,

B0
z (x, y) =

√
n

π
e−n(x2+y2), n > 0, (11)

whose integral in the infinite domain is equal to 1. This magnetic field distribution
approximates the field produced by a magnetic point dipole. Using approximation
(11), an analytical solution of Eq. (10) can be found that satisfies condition (8).
It has the form

bz(x, y) = − 1
2
√

nπ

x

x2 + y2
e−n(x2+y2), (12)

however, as a consequece of the approximation, this solution diverges at the ori-
gin. Nevertheless, it closely reproduces the behavior of the induced field, as can
be shown from the numerical solution of the full equations. Fig. 1a shows the
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Fig. 1. (a) Isolines of an induced magnetic field in the creeping flow past a magnetic obstacle. (b)
Induced field as a function of the axial coordinate at y = 0 (solid line) and y = 0.1 (dashed line).

isolines of the induced magnetic field given by Eq. (12) while Fig. 1b presents the
variation of bz with respect to the streamwise coordinate. This reveals that the
flow past the magnetic obstacle generates two symmetric current loops, upstream
and downstream the location of the obstacle, with clockwise and anti-clockwise
circulation, respectively. Hence, in the neighborhood of the origin, the flow of
current in the negative direction is intensified. Due to the direction of the applied
field, this results in a localized Lorentz force that opposes the fluid motion and
causes an abrupt change in the pressure in the obstacle neighborhood.

The flow perturbation can be found through the solution of Eqs. (1)-(3).
By introducing Eqs. (9) into (1)-(3) and neglecting second order products in
the perturbed velocities, a linearized system of equations is obtained. Taking
the curl, we get a transport equation for the only vorticity component, ωz =
∂v′/∂x− ∂u′/∂y. For a steady state with Re << 1, the vorticity can be expanded
as ωz = ω

(0)
z + Re ω

(1)
z + O(Re2). Therefore, at O(Re0) the vorticity satisfies the

equation

∇2
⊥ω(0)

z = Ha2
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z
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∂B0
z

∂y

)
, (13)

where conservation of current has been used. The right-hand side of Eq. (13) is
known at the leading order of approximation since the current density components
can be calculated explicitly from equations (5) and (12). The solution of Eq. (13)

Fig. 2. (a) Vorticity isolines at O(1) in the creeping flow past a magnetic obstacle. (b) Vorticity as a
function of the axial coordinate at y = ±0.1. Ha = 1.
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is found to be

ω(0)
z (x, y) =

Ha2 y

4π(x2 + y2)

[
1
2
e−2n(x2+y2) + n(x2 + y2)Ei(−2n(x2 + y2))

]
(14)

where

Ei(z) = −
∫ ∞

−z

e−t

t
dt, for z > 0.

Solution (14) satisfies the condition ωz → 0 as x, y → ±∞ but, as the induced
field (12), diverges at the origin. The assumption u′, v′ � 1 limits the solution to
small values of the Hartmann number since the flow field cannot be substantially
altered. In Figs. 2a, b the solution (14) is presented for Ha = 1. Fig. 2a shows the
vorticity isolines while Fig. 2b presents the vorticity as a function of the streamwise
coordinate at different cross-stream positions. It is shown that symmetric regions
of positive and negative vorticity are created due to the presence of the magnetic
obstacle. The symmetry observed in the solution reflects the lack of convective
effects.

2.2. Numerical solution. We implemented a numerical method in order to
solve full equations (1)–(4) with the applied magnetic field (6). The numerical
solution was addressed using a formulation based on the primitive variables, the
velocity and pressure, and the induced magnetic field as electromagnetic variable.
A finite difference method on an orthogonal equidistant grid was used to solve
the governing equations in a rectangular geometry, assuming a prescribed unform
flow at the inlet and Neumann boundary conditions at the outlet. Symmetry-type
conditions simulating a frictionless wall were imposed at the lateral boundaries,
while the induced magnetic field was set to zero at the boundaries of the integration
region. The details of the numerical method and its validation are given in [10].
First, we explored numerically the behaviour of the flow in the range 1 ≤ Ha ≤ 100
under the creeping flow conditions (Re = 0.05). In the range 1 ≤ Ha ≤ 7 the
flow behaves mostly as the analytic solution predicts, namely, only two current
loops exist and due to the Lorentz force opposing the main flow, the pressure
rises upstream as the obstacle is approached and drops suddenly downstream in a
distance of the order of the characteristic length. This force causes a deficit in the
streamwise velocity and the appearance of a small cross-stream component which
gives rise to a local shear flow that is more pronounced the higher the Hartmann
number. As Ha grows, inner current loops appear inside the obstacle modifying
the flow dynamics in a noticeable way (see Fig. 3a where the projection of the
magnetized surface on the plane of motion is shown through a unitary square for
visualization purposes). Due to the stronger Lorentz force opposing the flow in

(a) (b)

Fig. 3. (a) Induced magnetic field isolines. (b) Velocity field. Re = 0.05, Ha = 1.
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Fig. 4. Vorticity as a function of time in the centerline downstream the magnetic obstacle for different
Hartmann numbers. Re = 100.

the upstream fringing region, the fluid circulates around the obstacle, increasing
the cross-stream velocity components to reach the same order of magnitude as
the streamwise components and intensifying the shear layers formed in the lateral
fringing regions. As a consequence, two tenuous recirculation zones (counter-
rotating vortices) are formed (see Fig. 3b).

3. Convection dominated regime. We present here the numerical re-
sults for conditions where convection is dominant, namely, Re = 100. We ex-
plored the range 1 ≤ Ha ≤ 100 and, under these conditions, the laminar flow may
display either steady or time-dependent solutions. Three different laminar flow
regimes were detected according to the value of the Hartmann number: steady,
transition and periodic vortex shedding [10]. Transition flow occurs in the range
20 ≤ Ha ≤ 25 where the flow develops a time periodic behaviour characterized by
the formation of elongated vortices in the near wake that are eventually shed. The
periodic flow has been characterized by analyzing the time dependence of vorticity
in the wake. Fig. 4 shows the vorticity as a function of time in the axial midline at a
position of 15 units downstream the centre of the obstacle, for different Hartmann
numbers. For Ha = 21 an incipient oscillation that eventually is damped out is
deteced along with a very weak recirculation in the near wake. As Ha increases the
oscillation is sustained with a growing amplitude; the periodic vortex shedding is
fully established for Ha > 25. Fig. 5 shows instantaneous vorticity isocontours for
Ha = 30. Initially, the formation of shear layers at both sides of the obstacle is pro-
moted. They remain parallel and aligned with the main flow direction, displaying
maximum and minimum of vorticity a few units downstream the obstacle center.
As the flow travels downstream, the shear layers become unstable. The onset of
the instability is featured by the appearance of a transverse oscillation in the mid

Fig. 5. Instantaneous isolines of vorticity at times t = 25, 50, 75 and 100, respectively. Re = 100,
Ha = 30.
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horizontal axis along the wake. The instability first appears far downstream from
the magnetic obstacle, where both the applied and induced magnetic fields are
negligible. This means that the instability is related to the specific shape of the
velocity profile, which is formed by the action of the magnetic field near the obsta-
cle. A close resemblance with the wake formed behind a cylinder is observed. The
Strouhal number that characterizes the vortex shedding was close to 0.1 which
differes from values around 0.150 usually reported for the two-dimensional flow
past a cylinder for this Reynolds number. The Strouhal number exhibits a weak
dependence on Ha, similarly to the behaviour observed in other MHD flows where
vortex shedding phenomenon appears [2, 4].

4. Conclusions. The main objective of this work is to call attention on
the generation of vorticity and the eventual appearance of instabilities leading to
unsteady generation of vortices in flows under non-uniform magnetic field distri-
butions. This has immediate implications for heat transfer enhancement applica-
tions. The key aspect of the flow analysis is the consideration of inertial effects and
the existence of electromagnetic non-uniformites given by applied magnetic field
gradients. The numerical results have shown that this problem has many similar-
ities with the flow around bluff bodies, displaying steady as well as time-periodic
vortical flow regimes.
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