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Introduction. In a helium cooled lead lithium blanket for nuclear fusion
reactors, the entire fusion power is removed by helium that flows at high pressure
and speed inside cooling plates. The liquid metal breeder is confined in cavities
formed by the cooling plates and heat conduction dominates the temperature field
inside the fluid, subject to a strong, externally applied magnetic field.

For evaluation of three-dimensional buoyant MHD flows, a numerical tool
is extended that is based on inertialess asymptotic techniques valid at the high
Hartmann numbers occurring in fusion applications. It is assumed in this first step
that the temperature equation decouples from the flow problem for the low Péclet
numbers that are typical for the considered liquid metal flows. The analysis applies
ideas of Kulikovskii [1] to buoyant MHD flows but differs from the formulation by
Alboussière [2] who used different coordinates.

1. Formulation. Consider the three-dimensional buoyancy-driven, iner-
tialess, incompressible flow of an electrically conducting viscous fluid subject to an
externally applied magnetic field. For strong magnetic fields, i.e. for high Hart-
mann numbers Ha = LB

√
σ/(ρν) � 1, the momentum equation and Ohms law

governing the flow outside viscous layers reduce at leading order to

∇p − f = j × B, (1)

∇φ + j = v × B, (2)

with conservation of mass and charge, ∇ · v = 0 and ∇ · j = 0. Here, the vari-
ables B, v, j, f , φ and p stand for the magnetic field, velocity, current density,
buoyancy force, electric potential and pressure, scaled by the reference values B0,
v0 = ν/LGr/Ha2, σv0B0, σv0B

2
0 , v0LB0, and σv0LB2

0 , respectively. The electric
conductivity of the fluid σ and its kinematic viscosity ν are assumed to be con-
stant and the temperature dependent density ρ enters the equations through the
Boussinesq approximation in terms of f = −T ĝ. In this formulation T represents
the difference between local and reference temperature, scaled by a typical temper-
ature difference ∆T . Inertia remains negligible if Gr/Ha4 � 1, where the Grashof
number Gr = gγTL3/ν2 gives the nondimensional measure for the buoyant forcing
in a geometry of typical length L, determined by gravity gĝ and thermal expansion
coe.cient γ.

Viscous effects are confined to thin boundary layers and enter the problem for
the flow in the inviscid core exclusively through the electric boundary condition

j · n = ∇t · [(c + δ)∇tφ] (3)

where the retarded fluid in the boundary layer of thickness δ = (HaBn)−1 con-
tributes to the nondimensional wall conductivity given by the wall conductance
ratio c = σwd/(σL). Here σw stands for the electric conductivity of the wall with

http://www.ipul.lv/pamir/ 235



L.Bühler, C.Wetzel

thickness d, n is the inward unit normal and ∇t stands for the gradient opera-
tor in the plane of the wall. Currents which leave the fluid core enter the viscous
boundary layer or the wall, turn in tangential direction and create along the wall a
distribution of potential φ that serves as boundary condition for the core equations.
The kinematic condition for core velocity v · n = 0 is suffcient to determine the
flow in the core. Details of the flow in the viscous layers can be obtained later by a
reconstruction of the well-known viscous Hartmann profile or by a reconstruction
of the flow in parallel layers [3].

2. Analysis. In order to achieve a numerical description that can be ap-
plied to a number of general MHD problems, the governing equations are formu-
lated in curvilinear coordinates, where one coordinate is aligned with the direction
of the magnetic field (along ẑ). The other two coordinates are boundary fitted to
describe in a special way the surface contour of the duct or cavity. The general
coordinates ui describe the fluid domain by the mapping

x = x̄
(
u1, u2

)
+ h

(
u1, u2

)
u3ẑ, (4)

in which x̄ represents a middle surface in the cavity that divides any magnetic field
line in the duct into two parts of equal length h. The contour of the geometry
is defined by two parts, e.g. the upper and the lower part for u3 = 1 and u3 =
−1. The equations (1)–(3) are formulated in tensor notation as outlined in [4],
with the additional buoyancy term included. The momentum equation is solved
for two current components while the third one is determined by integrating the
charge conservation equation along magnetic field lines. Now currents have a
representation as a function of pressure gradient ∂ip, buoyancy force fi, and a yet
unknown integration function α as

jk = jk (∂ip − fi, α) . (5)

Then Ohms law is solved for two velocity components and the third one is ob-
tained by integration of mass conservation along magnetic field lines. The final
representation of velocity reads now

vk = vk (∂iφ + ji, β) , (6)

where the velocity depends on potential gradient ∂iφ, currents ji, and a second
integration function β. The two integration functions are expressed in terms of the
wall potentials at the upper and lower wall φ

(
u3 = ±1

)
. Elimination of current

from (5) and (6) and applying the kinematic boundary condition at the walls yields
a second order partial differential equation for the determination of pressure as a
function of wall-potential gradients. The problem is entirely described by solving
the second order PDE (3) on the walls u3 = ±1 for potential, after replacing the
wall normal currents by formulation (5).

The code has been validated at various simple test cases for which solutions
are available. One verification example is the magneto-convection in a long vertical
circular pipe with transverse horizontal magnetic field B = ẑ and given uniform
horizontal temperature gradient ∇T = ŷ. It is possible to determine by asymptotic
techniques the core velocity along the vertical axis x as

v = y

(
2 +

hHa
chHa + 1

)
x̂, whereh =

√
1 − y2. (7)

A comparison of the numerically obtained results with this analytical expression
gives perfect agreement (see Fig. 1).
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3D Magnetoconvection in Strong Fields

Fig. 1. Velocity profile in a long vertical pipe with transverse magnetic field B = ẑ, driven by
a non-uniform temperature T = y. For comparison with the Eq. (7) see the black line at z = 0.
Colors indicate temperature.

3. Three-dimensional calculations. As an example for a threedimen-
sional calculation we present the magneto-convective flow in a thermosyphon. We
consider a standing torus with major radius R and circular cross section of radius
r = 1. Themagnetic field is aligned with the horizontal major axis of the torus, i.e.
B = ẑ, and the fluid is subject to a given uniform horizontal temperature gradient
∇T = ŷ in a vertical gravity field aligned along −x̂. Such temperature profiles
lead to a 3D distribution of pressure while the potential exhibits no variation along
the toroidal direction as shown in Fig. 2.

Inspection of velocity profiles shows further that the velocity, like the po-
tential, does not change along the toroidal direction. The velocity profile and

Fig. 2. Magneto-convection in an electrically insulating loop with major radius R = 1 (upper)
and R = 8 (lower row) for Ha = 1000. Surface contours of temperature (first ), pressure (second),
potential (third column).
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Fig. 3. Azimutal velocity profiles for different major radii R for insulating and conducting walls.

magnitude, however depend essentially on the major radius and on the Hartmann
number. This can be seen from Fig. 3. The latter figure shows radial velocity
profiles in the equatorial plane of the torus. For Ha � 1 this velocity profile is
practically constant along magnetic field lines in the whole cross section but de-
cays quickly to zero within the thin Hartmann layers at the wall. For the small
major radius R = 1 the flow is carried preferentially near the outer region. The
reason is obvious since the driving pressure gradient is highest near the outer wall
and vanishes at the inner wall that coincides with the major axis of the torus. For
larger R the pressure becomes more and more uniform in the cross section and
the velocity approaches profiles which are typical for pressure-driven MHD flows
in straight insulating pipes, where v ∼ √

1 − r2 [5]. For conducting walls we find a
similar behavior, i.e. higher core velocities in the outer and lower velocities in the
inner regions and a tendency that the flow approaches the typical velocity profile
as in conducting straight pipe flow as R → ∞, where v → const.

4. Conclusions. A 3D asymptotic-numeric code has been extended to
account for buoyant e.ects in MHD flows at high Hartmann numbers. The code
has been tested with several known solutions and applied to the 3D geometry of a
toroidal thermosyphon with given temperature profile. For creeping flows at low
Peclet numbers, the derived model is flexible enough to be applied for a variety of
other geometries and temperature distribution. For flows at higher Peclet numbers
one should include in the model additionally the coupling between the flow and
the temperature field.
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