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Introduction. Recent results on both the formation of the U-shaped veloc-
ity profile at the entry in a uniform magnetic field (Alboussière, 2004, [1]; Andreev
et al. , 2005, [2]) and the evolution of a round jet in the presence of an axial uni-
form magnetic field (Kim & Choi, 2004, [3]) have renewed the interest on these
two problems, which are kinds of paradigms in liquid metal MHD. The purpose
of this paper is to discuss some guiding ideas on the mechanisms which govern
these flows and to derive relevant scaling laws. In the case of the entry problem
(section 2 below), we consider the case of a rectangular channel, we suppose the
initial formation of the U-shaped velocity profile in the fringing region is known
and we take the Alboussière predictions as initial conditions at the beginning of
the region where the magnetic field remains uniform. We focus on the evolution
along the abscissa of this velocity distribution in the presence of the uniform mag-
netic field. This investigation is made in the frame of the quite usual assumptions
for liquid metal MHD flows (Re � 1, Rm � 1, Ha � 1, all walls being electrically
insulating).

In the case of the aligned jet, we also assume Re � 1 and Rm � 1, and
we use the simplified form of the induction equation valid in such conditions.
No assumption is necessary on Ha, which is not a relevant parameter, but the
minimum value of the magnetic field which is necessary to get a significant MHD
effect is discussed, in terms of the Alfven number A/U , where A is the Alfven
velocity and U the typical jet velocity, and of the magnetic Prandtl number Pm =
µσν. The potential influence of Alfven waves on unsteady disturbances, which
may develop because of the high shear present around the jet [5], is also discussed.

1. Evolution of the U-shaped velocity profile. Let us consider a
rectangular channel of half-widths a in the magnetic field direction (0z) and b in
the direction (0y) perpendicular to both the magnetic field and the duct axis (0x).
We start from the Alboussière [1] prediction on the jet formation, derived from
a local analysis in the entry region where the applied uniform magnetic field is
denoted Bz(x) = B0B and where its axial derivative is written as

dBz

dx
=

B0

a
G(x).

According to Alboussière [1], when the jet enters the uniform magnetic field (B =
1), the jet velocity profile has the exponential form

u

u1
= exp

(
− y

a
G
√

Ha
)

, (1)

where u1(x) stands for the maximum of the jet over-velocity and the origin of y is
taken at the wall. The Hartmann number Ha = aB0

√
σ
ρν is supposed very large.

According to (1), the initial width of the jet is δ0 = aG−1Ha−1/2 and G must be
supposed small enough in comparison with unity, so that the side layer present
along the parallel wall (y = 0), whose thickness is δ‖ = aHa−1/2, is significantly
thinner than the jet and may be treated as a sub-layer (see Fig. 16 in Alboussière
[1] to appreciate the validity of this assumption).
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We now consider the downstream evolution of the jet when x > 0. Modeling
the Hartmann friction with the linear term introduced by Sommeria & Moreau
[4], the momentum equations in the axial direction within the jet and within the
core flow, where the core velocity is denoted u0(x), write

u
∂u

∂x
+ ν

∂u

∂y
= −1

ρ

dp

dx
− u

tH
+ ν

∂2u

∂y2
, u0

du0

dx
= −1

ρ

dp

dx
− u0

tH
. (2)(3)

As soon as the pressure becomes uniform in the cross-section, the difference be-
tween (2) and (3) yields

u
∂u

∂x
+ ν

∂u

∂y
− u0 =

u0 − u

tH
+ ν

∂2u

∂y2
, (4)

where the two terms of the right hand side are of the order of
νU

a2
Ha, whereas the

terms on the left hand side are of the order of U2/L, U being a typical velocity
scale and L a typical length in the x-direction. This implies that the jet’s thick-
ness cannot vary significantly over very long distances. We then admit that this
thickness remains constant and equal to

√
νtH = aHa−1/2 all along the jet. This

order of magnitude analysis also means that the key ingredient to accelerate the
core flow is the pressure gradient occurring in the jet to balance the strong Hart-
mann braking force (of the order of (u0 +u1)/tH) and also present in the core flow
where the braking is only u0/tH . It also means that the transfer of momentum
eventually due to the quasi-2D turbulence generated between the high velocity jet
and the low velocity core, certainly related to the inertial terms of (4), cannot be
a sufficient mechanism to accelerate the core flow.

Then, it is straightforward to derive two model equations for the unknown
quantities u0(x) and u1(x) from the conservation of the total flow rate and the
global momentum budget. In non-dimensional notations, the simplified form of
these equations is:

U1 = α(1 − U0) and
dU0

dx

[
(2 − α) + (α − 3)U0

]
= −(1 − U0) . (5)(6)

Here U0 and U1 are non-dimensional velocities built with the velocity V = q
2a

of the equivalent uniform flow, x is the non-dimensional coordinate built with
the length V a2/νHa, and the parameter α = b/δ = bG

√
Ha/a is an aspect ratio

characterizing the fraction of the total width occupied by the jet. The linear term
at the right hand side of (6) represents the Hartmann braking supported by the
jet. This simplified expression (6) is only valid when G is small enough, or when
the Hartmann braking supported by the core flow is negligible in comparison with
the braking supported by the jet. It could still be more simplified, assuming that
α � 1, but this would only be valid when G

√
Ha � a/b. It is noticeable that,

in the more general expression, this friction term would include both the friction
in the Hartmann layer and the friction in the side layer, which are of same order
of magnitude since the jet’s thickness is proportional to Ha−1/2, whereas, in the
simplified form (6), the friction along the side wall is neglected. Equations (5) and
(6) have an explicit solution:

(1 − U0) exp
[
(3 − α)U0

]
= exp(−x) . (7)

At the entry into the magnet, the slope of the curve U0(x) is (α−2)−1, which shows
that the necessary length to reach a quasi-uniform velocity profile is of the order
of bG

√
Ha−2a. And the asymptotic tendency to uniform the velocity distribution

is given by the exponential expression:
U0 = 1 − exp(α − 3 − x) . (8)

2. Main properties of the aligned jet. Let us write the actual mag-
netic field B = (B0 + bx)ex + brer, where bx, br denote the axial and radial
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components of the induced magnetic field and B0 stands for the intensity of the
applied field. In the frame of the classical boundary layer approximation, the main
novelty of this problem comes from the equation for the pressure variation in the
radial direction (across the jet):

−1

ρ

∂

∂r

(
p +

B0bx

µ

)
= 0 , (9)

which is raising the unusual question: is the pressure variation due to the radial
component of the Lorentz force which tends to pinch the jet significant or not?
To clarify this point, let us examine the expression of Ohm’s law in the azimuthal
direction (the two other components of the current density are zero or negligible):

µjθ = −∂bx

∂r
= −µσB0ν . (10)

Assuming that those three terms are zero outside the jet (when r → ∞) would can-
cel all fluid entrainment into the jet and would force the flow rate to be invariant, a
situation we may consider as in contradiction with the definition of such a jet flow.
Similarly, assuming that Br cancels outside the jet would imply that the magnetic
flux across any jet cross-section is invariant. So we reject those assumptions.

Now the motion equation in the axial direction writes:

u
∂u

∂x
+ ν

∂u

∂r
= −1

ρ

dp

dx
+ ν

1

r

∂

∂r

(
r
∂u

∂r

)
(11)

and the only way for the Lorentz force to intervene is through the axial component
of the pressure gradient. Integrating (9) and using the condition that p and bx

both cancel outside the jet, we get
dp

dx
= −B0

µ

∂bx

∂x
= −ρA

∂a

∂x
, where A =

B0√
µρ

stands for the Alfven velocity and a =
bx√
µρ

. To complete the formulation of this

problem, we just have to add to (11) the equation of continuity and the projection
of the induction equation in the axial direction:

∂u

∂x
+

1

r

∂

∂r
(rν) = 0 , A

∂u

∂x
+ η

1

r

∂

∂r

(
r
∂a

∂r

)
= 0 . (12)(13)

And the boundary conditions are the same as for ordinary jets, with the addition

of a(r → ∞) =
∂a

∂r
(r = 0) = 0. Then the only novelty in this formulation comes

from the new term A
∂a

∂x
at the right hand side of equation (11).

Let us now introduce a typical velocity scale U (for instance the velocity at
the exit of the nozzle). When compared with inertia, the new term is of the order

of
A2

U2

ν

η
. Clearly, because the magnetic Prandtl number Pm =

ν

η
= µσν is always

very small (10−7 to 10−6 in most liquid metals), a very large Alfven velocity is
necessary to get a non negligible influence of the applied magnetic field on the

jet. The enclosed table gives typical values of the ratio
A2

U2

ν

η
for two values of

U and three values of B0. In all cases, it is clear that the laminar jet should be
independent of the magnetic field influence.

B0 = 1 Tesla B0 = 10 Tesla B0 = 102 Tesla

U = 1 m/s 10−5 10−3 10−1

U = 3.16 m/s 10−6 10−4 10−2

Then, the main idea suggested by this analysis is that the effect of the mag-
netic field should be limited to the development of instabilities excited by the
velocity gradient, certainly elongated in the magnetic field direction, and limited
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by both Joule and viscous dissipations. The numerical results presented by Kim
& Choi [3] at the recent ICTAM (Warsaw, 2004) seem to agree fairly well with the
above ideas. It is likely that Alfven waves, which are relevant at laboratory scale
if the magnetic field is very high [5], or when the Lundquist number is larger than
unity, may have a significant influence on these instabilities. In this jet flow, the

relevant Lundquist number should be Lu =
Aδ2

ηx
. Since the jet spreading is not

significantly affected, its radius should be close to the classical laminar prediction
δ ≈ νx

Ud
, where U and d are typical velocity and length scales at the nozzle exit.

This shows that the relevant Lundquist number is
A

U

ν

η

ν

Ud

x

d
. In other words, even

with a very low magnetic Prandtl number, there are always abscissas such that the
waves become relevant. The consequence of this is that the simplest form of the
induction equation should not be limited to (13), but should also keep the time

derivative
∂a
∂t

.

3. Concluding remarks. Simple ideas, based on the leading mecha-
nisms, seem to be sufficient to predict the behavior of those two kinds of jet flows,
at least in the asymptotic limit of high magnetic field. Remarkably, in both cases,
the turbulence should not be an important ingredient. In the case of the U-shaped
velocity profile, this analysis assumes that the duct aspect ratio is large enough
to let enough space between the jets for a core flow (this is why we prefer the
expression U-shaped to the usual M-shaped). It also assumes that the magnetic
field gradient G is small enough. In a typical experiment G first slowly increases
from zero when x → −∞ to a maximum of the order of 0.37 (this estimates comes
from an exact solution for the curl-free and div-free magnetic field). It then de-
creases very rapidly to zero when x → 0 and B → 1. This suggests that the jet
reaches its minimum width when G = 0.37 and then enters into the uniform field
with this initial width δ0 = 2.7a

√
Ha. This value of G is not very small and this

ratio
δ0

δ‖
= 2.7 is not very large. One might therefore see here some limitation in

the above results for this developing flow. In the case of the aligned jet, the above
analysis suggests that the main effect of the applied magnetic field should be on
the developments of instabilities and that the influence of the Alfven waves might
be significant at a large distance from the nozzle.
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