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Introduction. The object of the present study is a vortex flow in a thin
layer of a conducting fluid generated by an electromagnetic (EM) force. We con-
sider a special version of em-forces, namely, the interaction of an externally applied
electric current with its own magnetic field. We study this flow-driving action by
considering a simple flat layer 1 (Fig. 1a, b) which has the form of a rectangular
parallelepiped, the thickness d0 of which is much less than its sizes a0 and b0 in the
horizontal plane. A direct electric current I0 with uniform density j = (jx, 0, 0),
where jx = I0/b0d0, passes through the fluid layer between vertical walls. Its own
magnetic field of induction B is enhanced by ferromagnetic yokes 2 with a jumper
3. The electromagnetic force fem = (0,−jxBz , 0) is rotational due to the restric-
tion of the yoke sizes in the plane and, therefore, generates an electro-vortex flow
(EVF) in the layer with one (Type A) or two (Type B) primary eddies (sketched
in Fig. 1a) which may be unstable. We investigate the stationary state and os-
cillations of the EVF by experimental and numerical methods. In experiment
we have employed the Ultrasound Doppler Velocimetry (UDV). With this non-
invasive technique we can gain detailed information about the EVF, which can be
readily processed and compared with numerical results.

1. Experimental setup. We studied the EVF in a plane quadratic
layer 1 (Fig. 1b) of liquid metal (gallium alloy: 20.5%In+ 67%Ga+12.5%Sn, ρ =
6256kg/m3 – density, ν = 3.1 · 10−7 m2/s – kinematic viscosity, σ = 3.56 · 106 S/m
– electrical conductivity) with thickness d0 = 0.01m and sizes a0 = b0 = 0.1m.
The layer was bounded by vertical walls: one pair of opposite walls 5 was made of
copper and played the role of electrodes, another pair of opposite walls 6 was made
of plexiglas as well as the bottom 7 and the lid 8 (not shown in Fig. 1b). The direct
electrical current source providing the current in the range of I0 = 0÷ 1100A was
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Fig. 1. (a) Sketch of the MHD-layer (top view). (b) Scheme of the experimental setup without
lid.
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connected through feed wires with electrodes 5. The use of ferromagnetic yokes 2
ensures variation of the magnetic field of the electric current increasing the value
of the field in the gap of δ = 0.03m between the yokes. The yokes had the sizes
aF = xF2−xF1 = 0.03m, bF = yF2−yF1 = 0.15m (see Fig. 1a) and the jumper 3.
The use of this ”C-core” allowed generation of the EVF with one or two primary
eddies. The maximal local value of the magnetic field B0 = I0µ0/δ = 0.044T
was achieved at the C-core position yF2 = 0 for the current I0 = 1100A (where
µ0 = 4π ·10−7 H/m is the vacuum permeability). To measure the velocity field, we
employed the UDV ”DOP2000” with a focused 4MHz transducer 4 (Figs. 1a, b)
of 8 mm diameter ”TR30405” (Signal Processing SA, Lausanne, Switzerland). We
directed the US beam normally to the walls 6 as this direction provided the span-
wise velocity component. During each UDV measurement we obtained a sequence
of Npr velocity profiles U(xP , y

pr, tpr) along the axis ξ (Fig. 1a). Here xP is the
position of the US transducer 4 (we used xP = {5; 10; ..90; 95} mm), ypr is the vec-
tor of Ny points along ξ (we used Ny = 304), tpr is the vector of Nt points on the
time axis (we used Nt = {512; 1024; 4096}). Fig. 2a shows one of the profiles from
the obtained sequence at some fixed time moment t∗. Due to multiple reflections,
the profile in the regions near walls I and II is not directly accessible (but actually,
the value at the bottom has to be zero because of the ”non-leakage” condition).
To take into account the ”shadow”-effect caused by local losses of the signal (IV
in Fig. 1a), we applied a ”rejecting zero” procedure.

2. Mathematical model. To formulate the mathematical model de-
scribing the electro-vortex flow of laminar and turbulent nature observed during
experiments, we have used a system of MHD equations resulting from a suitable re-
duction of the problem complexity. We first use the low magnetic Reynolds number
assumption Rm � δ/a0. With this approximation, one can ignore the influence of
the flow on the electromagnetic field. In our case, Rm = µ0σV0d0 = 0.044V0 and
δ/a0 = 0.3, so that this approach was appropriate for our treatment up to a max-
imal velocity of V0 < 1 m/s. Therefore, we can calculate the electromagnetic force
density f em using the electric current jx and the induction Bz [1] only. Another ap-
proximation, which can be applied to thin layers d0 � min(a0, b0), is based on an
assumption that the velocity field vector has no vertical component. We approx-
imate the horizontal velocity components V 3D

i (x, y, z, t) = Vi(x, y, t)fV (z,Ha,Re)
by multiplying the planar velocities Vi by a function fV , which describes the ver-
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Fig. 2. (a) Example of velocity profiles (I0 = 1000 A, Type A): A – calculated profile
Vy(xP , y, t

∗), B – mean of Nt = 512 experimental profiles U(xP , y), C – instantaneous ex-
perimental profile U(xP , y, t

∗), D – approximation of U by Chebyshev polynomials (Uappr). (b)
Maximum mean velocity vs. the electric current (here and after A – for the EVF of type A, B –
for the EVF of type B, solid lines – calculations).
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tical profiles (i = 1, 2 with the notation V1 ≡ Vx, x1 ≡ x,...), where Re = Vi is the
Reynolds number and Ha = B0Bzd0

√
σ/ρν is the Hartmann number. In our case

these numbers have the following maximum values: Re ≤ 3.3 · 104, Ha ≤ 34. It
means that the flow may be turbulent, and the magnetic field may influence the
flow structure and the instability threshold. Eventually, the Navier-Stokes equa-
tion for the incompressible flow Vi,i = 0, integrated along the vertical axis through
the layer, for i, j = {1, 2} is written as

∂Vi

∂t
+ Vj

∂Vi

∂xj
= −∂(P + kT)

∂xi
+ νT ∂

2Vi

∂x2
j

+ κVi +
∂νT

∂xj
eij + Sf em

i (1)

Here we use the following notations: P is the pressure, kT is the turbulent kinetic
energy, νT = (1 + ηT/ρν) is the turbulent kinematic viscosity which is defined
using the kT-ωT model [2], κ is the factor describing the turbulent friction near the
horizontal solid walls depending on the local Re and Ha numbers, eij = Vi,j + Vj,i

is the tensor of velocity deformation, and S = I2
0µ0d0/ρν

2δ is the parameter of
MHD-interaction. At the solid side walls of the layer the no-slip condition for the
velocity must be fulfilled: Vi(x = {0; a0}, y) = 0, Vi(x, y = {0; b0}) = 0.

3. Results. To analyze the experimentally and numerically obtained re-
sults, we have processed two types of information about the velocity fields: values
of the velocity component at the selected point U(xP , yP , t) (see Fig. 1a), and
the velocity profiles U(xP , yi, t) along the y-axis. Fig. 2b shows the dependence
of the mean velocity U(xP , yP ) on the electric current. It is seen that the larger
the scale of eddies, the higher the velocity. As could be expected from Eq. (1),
the maximum mean velocities increase linearly with the external current. A good
agreement is seen between the experimental and theoretical results in Fig. 3. To
construct the streamfunction, we have calculated the Chebyshev approximation
U

appr

M (xP , yi) (hereinafter the overscript bar denotes the time-averaging proce-
dure) of velocity profiles obtained for the values of xp = j ∗ 5mm (j = 1...19)
by moving the UDV sensor along the sidewall of the layer and integrated them
along the x-axis (forward and backward averaging of the results of integration
along the x-axis) ψ(xj , yi) = 0.0025

(∑j
k=0 U

appr
M (xk, yi) −

∑20
k=j U

apr
M (xk, yi)

)
.
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Fig. 3. Example of stream-function ψ (the EVF of type B, I0 = 100 A): (a) calculations, (b)
experiment.
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Fig. 4. (a) Energy f2 of the measured velocity signals at the point (xp, yp) vs. the electric
current: dots – experimental data for types A and B, solid line – calculations for type B. (b)
Energy f3 of the velocity profiles at x = xp vs. the electric current.

The growth of the external current I0 leads to an increase of velocities and to
a higher level of oscillations. Fig. 4a shows the energy f2 =

∑
k F

2
k of the signal

u′(t) = (U(xP , yP , t)/U(xP , yP )−1), where Fk ≡ FTk(u′) is the Fourier-spectrum.
One can see that the level of oscillations for the EVF of type B is higher than for
type A, however, for both EVF types f2 grows with increase of the electric current.
Apart from the analysis of signal fluctuations at one point, it is also interesting
to calculate the energy f3 based on the velocity profile along the y-axis. We
transform the functions u′∗(xP , yi, t) ≡ U(xP , yi, t)/ < U(xP , yi, t) > which are
the profiles divided by their coordinate-averaged value, and perform smoothing in
terms of Chebyshev polynomials u∗(t) = TTm(u′∗), where u∗(t) is the spectrum.
Calculating for each external electric current the energy f3 via f3 =

∑
k G

2
k where

Gk = FTk(u∗), we obtain the results shown in Fig. 4b. As expected, smoothing
with the Chebyshev spectrum procedure eliminates the short-wave components.
These results are an obvious demonstration of the fact that in the present case the
EVF with two-eddies is less stable than the EVF with one eddy. A close agree-
ment between the theoretical and experimental results was obtained. Thus, the
applied model proved to be capable of providing reliable data for this class of flow
problems.
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