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Introduction. The problem of molten metal control by a spatially inhomoge-
neous magnetic fields is getting more and more important for industrial applications in
metallurgy and crystal growth. This method, also known as electromagnetic brake, is
applied for suppression of undesirable jet-like structures of liquid metal flows, which take
place, for example, in the process of continuous casting. In an industrial facility a mag-
netic field is created by an electromagnet mounted in the mould of a slab caster, where
it controls the flow of the hot metal. The electromagnetic brake provides the necessary
conditions of the mould for obtaining a major reduction of non-metallic inclusions as well
as a significantly reduced risk of surface cracks. The process of electromagnetic brake,
its advantages and drawbacks are broadly described in special publications. Some of the
relevant references are [1, 2, 3].

1. MHD flow under inhomogeneous magnetic field. In the experiment we
deal with a flat channel flow confined by the rigid non-conducting walls. The flow is driven
by a horizontal pressure gradient. An external steady magnetic field is locally applied
with the aim to create an essential gradient of the field in a stream wise direction. In the
transversal direction the magnetic field is homogeneous. Since the fluid is incompressible
and electrically conducting, the flow is governed by the momentum equation with the
Lorentz term:

dV

dt
= −1

ρ
∇p + νV +

1

ρ
j × B; (1)

equation of continuity for the vectors of velocity and electrical current density and the
Ohm’s law:

∇ · V = 0, ∇ · j = 0, V × B = ∇ϕ + j/σ (2, 3, 4)

To set the equation (1) into dimensionless form we introduce the following governing
parameters. The ratio of inertial and viscous forces is characterized by the Reynolds
number Re = V0H/ν. The strength of electromagnetic forces in relation to the viscosity
and inertia are described by the dimensionless Hartmann Ha2 = B2

0H2σ/(ρν) and Stuart
N = Ha2/Re numbers respectively. Here σ, ρ and ν denote the electrical conductivity,
density and kinematic viscosity of the fluid. V0, H , B0 are mean flow rate velocity, height
of the liquid layer, and z component of magnetic field in the central point of a magnet
system.

The current is generated by the difference of an electromotive force inside and outside
the magnet, where the magnetic field has maximum or vanish respectively. Interaction
of the transversal component of electrical current with the vertical magnetic field drags
the flow in its central part. In the vicinity of the sidewalls because of a boundary
effect the electrical current changes its direction from the transversal to the flow wise.
This transformation increases rotational part of the electromagnetic force. As a result a
strong velocity gradient develops in this region. The velocity profile is so-called M-shaped
with two expressed maxima near the sidewalls and minimum of velocity in the central
part. Such a flow is good investigated theoretically and experimental (see, for example,
[4, 5, 6, 7, 8, 9]).

Since the effect of inhomogeneous magnetic field on a MHD flow is essentially rota-
tional, it is convenient to base our estimation on the momentum equation rewritten in
the term of vorticity:

ρ
dωz

dt
= ρν∆⊥ωz + rotz(j × B) ≈ ρν∆⊥ω + Bz

∂jz

∂z
− jx

∂Bz

∂x
(5)
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Here ∆⊥ = ∂2/∂x2 + ∂2/∂y2.
In this estimation we consider the vertical component of vorticity ωz = rotzV and

neglect the horizontal components of magnetic field and spatial variation of Bz in y
and z directions. Neglecting vertical structure of the flow, let average the equation (5),
integrating that in z direction:

ρ

H

d

dt

∫
H

ωzdz = ρ
dω̃z

dt
≈ ρν∆⊥ω̃ +

Bz

H
· jz

∣∣
δH

− j̃x
∂Bz

∂x
(6)

Here the averaged values are marked by tilde. Taking into account that thickness of the
Hartmann boundary layer δH = H/Ha is much smaller compared with H , the properties
of this layer can be used as boundary conditions for the main core flow. For example,
the value jz

∣∣
δH

in (6) is the component of electrical current penetrating into the core

flow from the Hartmann boundary layer. To estimate the orders of terms in equation (6)
we introduce the followings scales: Vv, lv, Vv/lv – typical velocity, length and vorticity
scales of the flow; ĵz , ĵ⊥ – typical electric current density for the its vertical and horizontal
components. Turnover time lv/Vv is an appropriate temporal scale. Now switching to a
dimensionless form, the equation (5) reads:

dω̃z

dt
≈ ν

Vvlv
∆⊥ω̃z︸ ︷︷ ︸
1

+
( l2vB0

ρV 2
v

ĵz

H

)
Bz · jz

∣∣
δH︸ ︷︷ ︸

2

−
( l2vB0

ρV 2
v

ĵ⊥
lB

)
j̃x

∂Bz

∂x︸ ︷︷ ︸
3

(7)

Typical value of the horizontal components of electrical current density ĵ⊥ can be esti-
mated by taking curl from the Ohm law (4):

rotz j̄ = σ · rotz(V × B) ≈= σ · Vx
∂Bz

∂x
(8)

Considering that the spatial scale of an electrical current is defined by the scale of velocity
lv, we can write according to equation (8) the following scale for the current:

ĵ⊥ ≈ σVvB0
lv
lB

(9)

The component of electrical current parallel to magnetic field generated by the Hartmann
boundary layer is proportional to vorticity of the core flow ω̃z and thickness of this layer
δH [10, 11, 12]:

jz

∣∣
δH

∼ σω̃zBzδH

Consequently, the scale of the z component of electrical current is

ĵz ≈ σVvB0
δH

lv
(10)

Taking into account (9), (10) we can rewrite the dimensionless equation (7) in the fol-
lowing form:

dω̃z

dt
≈ 1

Re

H

lv
∆⊥ω̃z︸ ︷︷ ︸
1

+
Ha

Re

lv
H

· Bzjz

∣∣
δH︸ ︷︷ ︸

2

− Ha

Re

lv
H

( lv
lB

)2

· j̃x
∂Bz

∂x︸ ︷︷ ︸
3

(11)

According to this estimation the viscous (term 1) is negligible, while the Reynolds number
remains large.

The mean flow, which has commensurable scales lv ≈ lB ≈ H , is governed by the
third term. Just the gradient of magnetic field creates an electromagnetic force that
essentially transforms the flow. This force is proportional to the Stuart number N. One
can see that the third term in (11) vanishes if the size of a flow structure lv is much
smaller than the scale of magnetic field lB , (lv/lB � Ha−0.5). Consequently, for the
relatively small-scale velocity fluctuations the second term in (11) can play an essential
role. This term is responsible for the so-called Hartmann friction, which is caused by
an absolute value of magnetic field and takes place even if the flow scale is negligible in
relation to a gradient of the field. The effect of Hartmann friction is inversely proportional
to the dimensionless parameter named Rh = H/lv)Re/Ha, which is a ratio of inertia and
shear stress created by the Hartmann boundary layer. In the present notation the Rh
parameter contains an indefinite value lv, that is a spatial scale of a certain flow structure.
For an experimental practice one can redefine this parameter as a ratio of mechanical
works of inertial forces and shear stresses in the Hartmann boundary layer. Thus the
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corresponding modified Rh number could be written as follows:

Rhm(x) =
H · ρV 2

0
x∫

−∞
ρν

V0
δH

dx

=
V0H/ν

B0H
√

σ/ρν

( x/H∫
−∞

Bz(x/H)

B0
d
( x

H

))
=

Re

Ha

( x/H∫
−∞

Bz(x/H)

B0
d
( x

H

))−1

The dynamic pressure ρV 2
0 was taken as an appropriate estimation for the work of

inertial force. For this parameter we use a stream wise distribution of magnetic field Bz

in the central part of our test section.
In the same manner we modify the Stuart number Nm(x) as a ratio of mechanical

works performed by electromagnetic and inertial forces.

Nm(x) =

x∫
−∞

σV0B2
z(x)dx

ρV 2
0

=
σB2

0H

ρV 2
0

x/H∫
−∞

( Bz(x/H)

B0

)2
d
( x

H

)
= N ·

x/H∫
−∞

( Bz(x/H)

B0

)2
d
( x

H

)

2. Experimental setup. The test section of experimental facility includes a
Plexiglas channel with a rectangular cross section L = 100 mm width and H = 20 mm
height. A longitude of the channel is half a meter. A honeycomb was installed in the
entrance part of the channel to ensure homogeneous initial velocity profile. A transversal
steady inhomogeneous magnetic field, was created by a pair of permanent magnets with
the following dimensions: 30 mm along the flow and 100 mm in transversal direction.
The magnets were located at the top and the bottom casing walls of the channel. The
magnitude of magnetic field was B0 = 0.504 T in the central point of the gap between the
poles. The distribution of magnetic field was essentially inhomogeneous along the flow
in x-direction. For example, the vertical component of magnetic field Bz varnished on
the distance of two gauges from the magnet center. A eutectic alloy of gallium, indium
and tin Ga68In20Sn12 was used as a model fluid. This alloy has the following physical
properties: melting points of +10.5◦C, density ρ = 6360 kg/m3, electrical conductivity
σ = 3.46 · 106 Ohm−1 and kinematic viscosity ν = 3.4 · 10−7 m2/s. A channel flow of
the model liquid was driven by an electromagnetic pump. Inside the region of applied
magnetic field the electric potential distribution was measured by a moveable potential
probe.

3. Transformation of mean velocity. For a quantitative characterization of
the M-shaped flow we introduce a simple parameter, which is a dimensionless thickness
of the side boundary layer. The definition of this parameter is illustrated in Fig. 1. An
inflectional tangent to M-shaped velocity profile on the inner shear layer separates an
y-intercept with a length marked in Figure by s. Dealing with a dimensionless velocity
profile we can consider value s as an appropriate scale for the thickness of the side
boundary layer. Since the length s is proportional to an inclination of the tangent and,
consequently, to the derivative ∂Vx/∂y, one can say that the thickness of the boundary
layer is proportional to the z component of vorticity ωz = ∂Vy/∂x − ∂Vx/∂y.

Here we assume that y component of velocity Vy is much smaller than the Vx. As it
was estimated above, the vorticity is caused by a rotational part of the electromagnetic
force, which is proportional to the Stuart number. In Fig. 1b we plot the s parameter
against the modified Stuart number. Four experimental series are obtained at the fixed
distances from the magnet and variable Reynolds number. During two other runs the
flow rate was maintained constant but the potential probe was moved in the middle
horizontal plane. It turns out that if the dimensionless coordinate x/H does not exceeds
value -0.5, the experimental points are placed along the one curve fitted by the following
power law: s(Nm) = 2.34Nm

−0.37. It means that before the coordinate x/H = 0.5 the
M-shape velocity profile develops as self-similar. After the mentioned coordinate the
experimental points occupy the certain curves in dependence on the Reynolds number.
In this region the mean velocity profile can be considered as almost developed.

4. Transformation of velocity fluctuations. According to the methodology
of potential velocimetry, we interpret the measured RMS fluctuations of electric potential
as fluctuations of velocity so far as those two characteristics are interdependent. In Fig. 2a
the relative RMS values of fluctuations measured by the potential probe in the central
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Fig. 1. Transformation of mean velocity profile. (a) Stream wise component of velocity Vx at
the different distances x/H with respect to the magnet center, Re = 4000, U0 = 8 cm/s – mean
flow rate velocity, ωz – vertical component of vorticity, s/H – dimensionless thickness of the side
boundary layer, H = 20 mm – height of the flow. (b) Dependence of the side boundary layer
thickness s/H on the modified Stuart number Nm.

part of the flow are plotted against the Reynolds number. Twelve experimental series
cover a range of 1 < x/H < 1.5 before and past the magnet. The measurement points
are situated on the axes (semi height and semi width) of the channel. Before the magnet
system a level of perturbations varies in a range of 4–8.5 % in dependence on the Reynolds
number. At the small Reynolds numbers, the perturbations are large scale and generate a
relatively high level of velocity fluctuations. For example, at the Re = 2000 an expressed
maximum of fluctuation occurs on the coordinates −1 < x/H < −0.5. This regime is
a result of oscillations generated by an unstable frontal boundary layer, which develops
before the streamlined area of the applied magnetic field and contains a critical point. In
the range of Reynolds number 2000 < Re < 4000 the intensity of fluctuation decreases.
It means that flow around the frontal critical points becomes more regular and the spatial
scale of the generated velocity perturbations decreases. Past the coordinate x/H > −0.5
the dependence of velocity fluctuations from the Reynolds number becomes monotonic.
At the Re < 4000, the intensity of fluctuations does not exceed 0.6 %. That is well
pronounced electromagnetic braking effect. With the growth of Reynolds number the
intensity of fluctuations increases. It is remarkable, that at the fixed values of Reynolds
number, the fluctuations decay moving downstream. It means that in the central part
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Fig. 2. Intensity of electric potential fluctuations (E′
y/E0 in the region of applied magnetic field

in the central part of the channel (y = 0) versus the (a) Reynolds number and (b) the modified
Rhm number. x/H – dimensionless distance from the center of the magnet. The negative and
positive values correspond to the space before and past the magnet respectively. E0 – strength
of electric potential corresponding to the mean flow rate velocity.

of the flow the velocity fluctuations are not fed by the energy but lose it due to the
Hartmann friction. Basing on this consideration we try to systemize the experimental
data plotting the value of velocity fluctuations against the modified Rhm number (see
Fig. 2b). There are two principal groups of the experimental points in this Figure.
The series corresponding to x/H = −1.5. . . − 0.65 form the first group. Those curves
have an expressed maximum of the velocity fluctuations caused, as mentioned above, by
instability of the frontal boundary layer. In Fig. 2a all those maxima are outlined by
the dashed line. At the further growth of the Rhm parameter the experimental points
attract to the curve 2 through a transitional regime. The curve 2 completely combines
six experimental runs corresponding to the coordinates x/H = −0.2. . .0.5. One can say
that for the mentioned conditions the Rhm is a universal parameter.
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5. Summary. Statement of the studied problem serves as a physical model for
the industrial process where structure and intensity of flow are controlled by magnetic
field. The investigated M-shaped flow is considerably inertial. We manage to recognize
a transitional regime of the mean flow transformation. On the distance characterized by
the range of x/H < −0.5 the side boundary layer develops as self similar. The process
of development is governed by the modified Stuart number.

An influence of applied magnetic field on the velocity fluctuations is also sufficient.
As the flow is subjected to magnetic field, the intensity of pulsations reduces in the center
2-fold compared with the initial flow. Maximum of the intensity of velocity fluctuations,
that constitutes value 8.5%, is much more pronounced ahead the magnet system. At
the growing Reynolds number a relative value of the intensity of velocity fluctuations
decreases and tends to a constant value 3.5% at Re > 5000. The electromagnetic brak-
ing of velocity fluctuations is governed by the Hartmann friction. In the region of a
relatively high magnetic field (180 < Ha < 400) the vortical structures have expressed
two-dimensional properties and the process of velocity fluctuations decay is governed by
the modified Rhm.
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