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Introduction. We consider the unsteady flow of an incompressible elec-
trically conducting fluid in the presence of a uniform magnetic field. The fluid
domain is a layer of uniform thickness h bounded by two parallel insulating walls
at z = 0 and z = h, and the magnetic field |B| = B0 is oriented in the z-direction
(Fig. 1). The physical properties of the fluid are such that the usual Reynolds
number is much larger than unity, the magnetic Reynolds number is smaller than
unity, and the Hartmann number Ha =

√
σ/ρν B0h is much larger than unity,

where ν stands for the kinematic viscosity, σ for electric the conductivity and ρ for
the density. In such conditions, the fluid flow is highly turbulent and the induced
magnetic field is negligible in comparison with the applied one. Such conditions
are typical of liquid metal experiments performed at laboratory scale. This kind of
MHD turbulence has been the subject of many theoretical investigations. Somme-
ria and Moreau [1] derived the necessary conditions for the turbulence to become
quasi-two-dimensional and they established a model equation, which exhibits a lin-
ear damping term, taking into account both Joule and viscous dissipations within
the Hartmann layer. Another relevant property to understand the dynamics of
MHD turbulence, discovered by Davidson [2], is the invariance of the component
of the angular momentum, which is parallel to the magnetic field. In complement
to the diffusion mechanism proposed by Sommeria and Moreau [1], this invariance
is also a key to the understanding of the tendency toward two-dimensionality of
the vortices in the direction of the magnetic field. The purpose of this paper is
to investigate the damping mechanisms and to derive the damping rates of the
quasi-two-dimensional vortices, which are likely to be present. To achieve this, we
disregard the non-linear energy transfer between the different classes of vortices
and we only take into account the liner terms in the relevant equations. Such an
analysis allows to isolate individual classes of vortices, each of them being char-
acterized by two parameters, a wavenumber k2d in the plane perpendicular to the
magnetic field, and a mode number m associated with the kz component of the
wave vector (see below for the full definition of these parameters). This purely
linear investigation yields the damping time scales of each class of vortices, but
it cannot yield their relative intensities, which are controlled by the neglected
non-linear effects.

Fig. 1. Electrically conducting fluid layer bounded by two insulating walls.
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1. Eigenvalue problem. The damping of vortices is analyzed with the
following set of linear equations:

∂ωz

∂t
= ν ∇2d

2ωz − σB0

ρ
(B0 ωz − ∇2d

2φ), ∇2φ = B0 ωz, (1)

where ∇2d

2 = ∂2/∂x2 + ∂2/∂y2 stands for the 2D Laplacian operator, ωz for the
vorticity component in the direction of the magnetic field, and φ for the electric
potential.

Following the same procedure as Sommeria and Moreau [1], we replace the
boundary conditions at the wall by matching conditions for the core flow at the
edge of the thin Hartmann layers:

∂φ/∂z → −
√

ρν/σ ωz for z → 0, ∂φ/∂z →
√

ρν/σ ωz for z → h. (2)

The tangential components of the velocity ux, uy may accept some slip when z → 0
or z → h.

Let us now apply two-dimensional Fourier transformation to eq.(1) :

∂ω̂

∂t
= −

(
k2dh

Ha

)2
ω̂

τj

− ω̂

τj

− k2d

2φ̂

B0 τj

,
∂2φ̂

∂z2
− k2d

2φ̂ = B0 ω̂, (3)

where we denote k2d

2 = kx
2+ky

2 and introduce the Joule time τj = ρ/(σB0
2) [1, 3].

We express the solutions of linear equations (3) in the form ω̂ = f(z) exp (−t/τ) ,φ̂ =
g(z) exp (−t/τ) . In any actual turbulent flow, the vorticity may not be damped as
the above exponential function, because there is nonlinear energy transfer. Never-
theless, we can estimate the dissipation in the nonlinear problem using the damping
rate 1/τ obtained from the linear problem. Substituting the above expressions into
eqs.(3) yields the following equation for f(z)

d2f

dz2
+ k2d

2α2 f = 0, where α2 =

[
1 +

(
k2dh

Ha

)2

− τj

τ

]−1

− 1. (4)

The boundary conditions (2) become

df

dz
→ k2d

2h(1 + α2)
Ha

f for z → 0,
df

dz
→ −k2d

2h(1 + α2)
Ha

f for z → h. (5)

Equation (4) and boundary conditions (5) form an eigenvalue problem. There
is an infinite number of eigenvalues kzm ≡ αmk2d given by

kzmh − mπ

2
= Arctan

(
(k2d

2 + kzm
2)h

kzmHa

)
(m = 0, 1, 2, 3, · · ·). (6)

Let us now call the integer m the mode number. The eigenvalues kzm exist in the
interval mπ < kzmh < (m + 1)π and, as a consequence, the eigenfunctions

fm = cos[kzm(z − h/2)], fm = sin[kzm(z − h/2)]
(m = 0, 2, 4, · · ·) (m = 1, 3, 5, · · ·)

(7)

have m zeros in the gap 0 < z < h. Finally, the following damping time is obtained
in terms of the wavenumber k2d and of the mode number m:

τm = τj

[
kzm

2

k2d

2 + kzm
2 +

(
k2dh

Ha

)2
]−1

. (8)
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Fig. 2. Variations of the eigenvalues kzm (left) and of the damping times τm (right) versus the
wavenumber k2d.

2. Damping properties. Fig. 2 show kzmh and (τm − τj)/τh, where
τh = (h/B0)

√
ρ/σν is the Hartmann damping time [1]. The time scale τ0 is

a monotonous decreasing function of k2d, whereas the other time scales τm for
m ≥ 1 are non-monotonic functions of k2d and have a maximum value at the
wavenumber k#

2d
= [

(
m + 1

2

)
πHa] h−1. Across the wavenumber range around k#

2d
,

the eigenvalue kzm increases from mπ to (m + 1)π. We call k#
2d

the matching
wavenumber. Furthermore, Table 1 provides approximations of the damping times
τm, which are classified into several classes by the range of combination of k2d and
m. The results given in this table are discussed below for each class of vortices.

2.1. Large scale vortices: k2dh � 1. Wavelength of vortices in this class is
greater than the fluid layer depth h.Thus, all the higher mode vortices (m ≥ 1)
are oblate. The profile of the eigenfunction f0(z) is z-independent. The damping
time τ0 is a half of the Hartmann damping time τh, which is much longer than
τj. These large-scale wall-to-wall vortices with long life-time are exactly 2D, as
suggested by many experiments of quasi-2D MHD flow. The damping time of
oblate vortices in this class (m ≥ 1, k2dh � 1) is the Joule time τj. It is much
shorter than τh. Consequently, such vortices are rapidly damped out or do not
exist from the beginning.

2.2. Medium scale vortices: 1 � k2dh � [(m + 1
2 )πHa]1/2. The wavelength

of vortices in this class is smaller than h but greater than the matching scale.
The profile of f0(z) is z-independent and τ0 is a half of τh as well as the large

Table 1. Damping times τm and their classification.

Large scale Medium scale Matching scale Tiny scale
(k2dh � 1) (1 � k2dh � k#

2dh) (k2d ∼ k#
2d

a)) (k2d � k#
2d)

Wall-to-wall 1

2
τh

b) 1

2
τh

1

π
τh τν

c)
( m = 0 )

Prolate
—

(
k2dh

mπ

)2

τj

1

(2m + 1)π
τh τν( 1 ≤ m � k2dh )

Isotropic — 2τj — —
( mπ ∼ k2dh )

Oblate τj

d) τj — —
( m � k2dh )

a) k#
2d =

√
(m + 1

2
)πHa /h, b) Hartman damping time: τh = (h/B0)

√
ρ/σν,

c) viscous damping time: τν = 1/(νk2d
2), d) Joule time: τj = ρ/(σB0

2).
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Fig. 3. Profiles of the eigenfunctions fm(z), (a) the medium scale vortices 1 � k2dh � [(m +
1
2
)πHa]1/2, (b) the matching scale vortices k2dh ∼ [(m + 1

2
)πHa]1/2, (c) the tiny scale vortices

[(m + 1
2
)πHa]1/2 � k2dh � Ha.

scale vortices. The profiles of fm(z) for higher modes (m ≥ 1) are sinusoidal
functions with a maximum at the outer edge of the core flow as shown in Fig. 3a.
If vortices are prolate ( 1 ≤ m � k2dh ), their damping time is much shorter than
τh and much longer than τj. These vortices are the “quantized eddies” predicted
by Sommeria and Moreau [1]. Quasi-2D MHD flow may be established after these
vortices are damped out. If medium scale vortices are isotropic or oblate, their
damping time is of the order of τj. Consequently, such vortices are rapidly damped
out or do not exist from the beginning.medium scale 1 � k2dh � k#

2d
h, because all

higher-mode large-scale vortices (m ≥ 1, k2dh � 1) are oblate and rapidly damped
out in short duration τj.

2.3. Matching scale vortices: k2dh ∼ [(m + 1
2 )πHa]1/2. The center of

the wavenumber range of this class is the matching wavenumber k#
2d

= [(m +
1
2 )πHa]1/2h−1. The wavelength of this class depends on the mode number m. It
is of the same order as the classical parallel-layer when 0 ≤ m � 10. The damping
times for m = 0, 1, 2 are of the same order as τ0 of the large-scale wall-to-wall
vortices. This fact suggests that actual quasi-2D MHD turbulent flows include not
only m = 0 but also the higher mode (m ≥ 1) eigenfunctions of the matching scale
vortices. The profiles of fm(z) are shown in Fig. 3b. Even f0(z) has 30% variation
along the magnetic field. Its “barrel-like” shape was predicted by Pothérat et al.
[4].

2.4. Tiny scale vortices: [(m + 1
2 )πHa]1/2 � k2dh � Ha. The vortices

in this class are characterized by the fact that τm is independent of the mode
number m and τm = τν = 1/(νk2d

2) is much smaller than τh. This suggests that
the pre-existing tiny vortices are rapidly damped out.

One should also notice that fm(z) becomes zero at the outer edge of the core
flow as shown in Fig. 3c. This suggests that these tiny vortices, if they exist, have
no Hartmann layers and may be considered as ordinary hydrodynamic vortices
rather than MHD vortices.
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