
The 15
th

Rigaand 6
th

PAMIR Conference on FundamentalandApplied MHD

Modeling of MHD turbulence

LES MODELING OF ANISOTROPIC
MHD TURBULENCE

O. Zikanov, A. Vorobev
Department of Mechanical Engineering, University of Michigan – Dearborn,

Dearborn, MI 48128-1491, USA

1. Introduction and Numerical Method. Turbulent fluctuations in
MHD flows become anisotropic under the action of a sufficiently strong magnetic
field. As was deduced in [1], the mechanism of this transition is particularly
transparent in the case of low magnetic Reynolds number Rm = uL/η, which is
considered in this paper. The rate of Joule dissipation of a Fourier mode with
the wavenumber vector k is µ(k) = σB2ρ−1(v̂(k, t) · v̂∗(k, t)) cos2 θ, where θ is
the angle between k and the imposed magnetic field B. The Joule dissipation is
anisotropic, attaining the maximum for modes with B ‖ k and zero for modes with
B ⊥ k. The dissipation tends to eliminate the velocity gradients in the direction
of B and elongate the flow structures in this direction. A remarkable feature of the
flow transformation is that the relative rate of the dissipation µ(k)/v̂2 depends on
the angle θ but not on the wavenumber k. One can assume that the anisotropy
would develop equally on all length scales of the flow. The situation looks more
complicated if one takes into account the non-linear energy transfer between the
modes and the resulting tendency to restoration of isotropy. The linearized picture
of the flow development is, strictly speaking, correct only in the limit of infinitely
large magnetic interaction parameter N = σB2L/ρu, when the inertia force is
negligible in comparison with the Lorentz force. At finite N , one can expect a
more complex scenario, probably with a scale-dependent anisotropy.

The flow transformation was studied in analytical, experimental, and numer-
ical works, [1]–[7] among them. Some aspects, however, remains not fully under-
stood. In particular, it is not clear, how universal is the anisotropy behaviour, i.e.,
to what degree it is determined by the magnetic interaction parameter as oppo-
site to the length scale under consideration and specific features of a particular
flow, such as large-scale forcing or the Reynolds number. Furthermore, there is
a related question whether existing LES (Large Eddy Simulation) models can be
justifiably applied to strongly anisotropic flows and which, if any, modifications of
the models have to be made. In this paper, we try to answer the questions in a
series of numerical experiments.

We consider a flow of a viscous, incompressible and electrically-conducting
fluid in the presence of a constant uniform vertical magnetic field B = Bez. The
Lorentz force in quasi-static approximation is applied. Since our goal is to study
the properties of turbulent fluctuations far from walls, the flow is assumed spa-
tially homogeneous and calculated in a rectangular box 2π×2π×4π with periodic
boundary conditions. An artificial forcing is applied to the Fourier modes with
1.5 ≤ k ≤ 3.1 to generate a statistically steady flow. Two types of forcing mecha-
nism are used. One is deliberately isotropic in the sense that the work is equally
divided among the forced modes. To reveal the effect of the large-scale flow be-
haviour on anisotropy at smaller scales, we perform a series of simulations with a
two-dimensional forcing, when only the modes with kz = 0 are forced. This forc-
ing imposes its own anisotropy at large scales. In order to investigate the effect of
the Reynolds number and consider the anisotropy at larger scale separation than
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is possible in DNS, calculations at higher Re are carried out using the standard
dynamic Smagorinsky LES model. The turbulent stresses are modeled using the
eddy viscosity formula

τij − δijτkk = −2CS∆2 |S|Sij , (1)

where Sij = (1/2)(∂iuj + ∂jui), ∆ = 1/3
√

∆x∆y∆z is the filter width, and |S| =√
2SijSji. The Smagorinsky constant CS is evaluated at each time step based on

the assumption that (1) is universally valid at all inertial range length scales (see [8]
and [9] for details). Applicability of traditional LES models to strongly anisotropic
MHD turbulence is not obvious. In our case, however, the Reynolds number is
not very high so only a small fraction of viscous dissipation has to be modeled.
It is shown in [10] that the dynamic model is quite accurate in the simulations
of homogeneous MHD turbulence at such Re. This conclusion is confirmed by
our comparison between DNS and LES flows. At last, as we discuss below, our
results indicate that the dynamic model, due to its self-adjusting mechanism, may
be capable of adapting to anisotropic character of MHD turbulence. The details
of the forcing and numerical algorithm can be found in [11].

2. Results and Discussion. In each numerical experiment, a developed
non-magnetic turbulent flow is calculated, which is then used as an initial condition
for three runs with N(t0) equal to 0, 1, and 5. The DNS are performed with
numerical resolution 2562 × 512 and Reλ(t0) ≈ 94. For LES, we carried out two
‘test runs with the same parameters as DNS but using only 322×64 and 642×128
Fourier modes. A series of LES with 642×128 modes is performed with a gradually
increasing Reynolds number, the highest value being Reλ(t0) = 290. The LES run
with Reλ(t0) = 150 was done with 3D and 2D forcing.

The main results are presented in Fig. 1 and 2 (a more detailed account of
our work can be found in [11] and in an extended paper currently in preparation).
Fig. 1 shows the time-averaged curves of

g(k) ≡ 3τ

2
µ(k)
E(k)

=
3

∑ k2
z

k2 û · û∗∑
û · û∗ , (2)

used as a measure of dimensional anisotropy (the anisotropy of flow gradients) at
the wavelength k. The sums are over all k in the shell k − 1/2 < |k| ≤ k + 1/2.
Isotropic and purely two-dimensional flows correspond, respectively, to g = 1 and
g = 0. An important conclusion that can be drawn from Fig. 1 is that there is a
significant range of wavelengths, within which the dimensional anisotropy varies
only slightly with k. This phenomenon was repeatedly observed in all our simu-
lations, DNS and LES with different Reynolds numbers and numerical resolution.
What is more, Fig. 1d shows that the flows obtained with 3D and 2D forcing have
different anisotropy only at large scales, where it is directly introduced by the forc-
ing. At smaller scales, the effect of large-scale dynamics quickly subsides and the
values of g(k) become very close. To conclude, our simulations strongly suggest
that the dimensional anisotropy at intermediate and small length scales is a nearly
universal function of the magnetic interaction parameter, affected only slightly by
the scale, Reynolds number, and details of the large-scale dynamics.

We analyzed the anisotropy of velocity components at different length scales
calculating the ratio

c(k) = (E1(k) + E2(k))/(2E3(k)), Ei(k) =
∑

k− 1
2<|k|≤k+ 1

2

(v̂i(k) · v̂i
∗(k))/2. (3)
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Fig. 1. Scale-dependent coefficient of dimensional anisotropy (2). (a) Comparison between the
DNS and test LES calculations; (b) LES results obtained at Reλ(t0) ranging between 90 and
290; (c) LES results at Reλ(t0) = 290 with numerical resolution 642 × 128 and 1282 × 256; (d)
LES results obtained with 3D (– – –) and 2D (− · · − · · −) forcing.

Form and existence of such an anisotropy are not obvious and do not follow directly
from the action of the magnetic field. Still, we can see in Fig. 2 that the principal
tendency is similar to that detected for the dimensional anisotropy. The coefficients
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Fig. 2. Scale-dependent coefficient of anisotropy of velocity components (3). The notation is
the same as in Fig. 1.
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c(k) at length scales sufficiently distanced from the forced region are much stronger
affected by the value of N than by the scale, Reynolds number, and details of
forcing.

The main focus of our current work is on evaluation of different strategies of
LES modeling of strongly anisotropic MHD turbulence. All the considered models
are based on the eddy viscosity hypothesis. The principal question is whether the
Smagorinsky formula (1) can still be used, with the anisotropic character of the
flow being represented by the anisotropy of Sij and adjustment of CS. There are
indications (see [10] for decaying and [11] for forced flows at moderate Reλ) that the
dynamic model is not less accurate in the MHD case than it is for isotropic flows.
This is not surprising in the view of our conclusion about the scale-invariance of
anisotropy. The MHD correction, whatever it may be, is approximately the same at
the length scales of grid and test filters. The mechanism of dynamic determination
of CS must, therefore, work in the MHD case with the same accuracy as in the
non-magnetic isotropic flows.

Alternatively, one can modify (1) by introducing tensor-like eddy viscosity
(see, e.g., [12] for development of such formula for the case of low-Rm MHD
turbulence). Taking into account the remaining symmetries and adopting certain
physics-based assumptions, one can write a generalization of (1) that includes 2
or 1 additional coefficients, for example

τij −δijτkk = −2CS∆2 |S|

 κS11 − (1 − κ)S33/2 2κS12 S13

2κS12 κS22 − (1 − κ)S33/2 S23

S13 S23 S33


 .

Here κ is the anisotropy coefficient that can be evaluated dynamically or re-
placed by one of the integral characteristics of dimensional anisotropy, such as
G = 〈(∂v2/∂z)2〉/2〈(∂v2/∂y)2〉.
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