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It is well known that in the absence of external effects on a turbulent flow,
Navier-Stokes (Euler) equation for the second moments in inviscid limit comprises
two integrals of motion – energy and helicity. As demonstrated in [1], in the case
of a developed turbulence in the inertial and dissipative intervals, the fluxes of
these integrals of motion considered as governing parameters lead to combined
spectra. The properties of these spectra depend on their ratio in the intervals
under consideration. In the case under study, the structure function D(r) in the
inertial interval has the form:

D(r) ∼
(
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η

)2/3 (η

ε

)δ

rδ. (1)

Here ε and η are energy and helicity fluxes, and δ depends on the properties of
the turbulent flow in dissipative scales.

When a conducting turbulent medium is placed into an external homogeneous
magnetic field, its behavior changes depending on the magnitude of this field,
since the turbulent flow becomes anisotropic (see, for example, [2]). On the other
hand, besides the viscosity, Joule dissipation arises in the system, which introduces
attenuation in all scales including the inertial interval.

As follows from experimental and theoretical studies (see, for example, [3]–
[5]), rearrangement of the conducting fluid flow depending on the external magnetic
field leads to its dimerization in large scales, while in small scales it remains three-
dimensional. In our opinion [5], it is connected with the fact that in the presence
of nonzero helicity, the flow instability arises with respect to large scale growth in
the region
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in the Fourier-space, where k0 = τ̃ |C|/νH , C is the helical part of the velocity
field correlator, τ̃ is the characteristic dissipation time, νH is hydrodynamic viscos-
ity (involving turbulent dissipation), N is the Stuart number, cos2 θ = k2

z/k2, and
kz is the wave vector aligned with the magnetic field. Figure 1 clearly shows that
with growing N (magnetic field magnitude), the instability region 0 < k < k0 is
retained for transverse (with respect to the magnetic field) modes and disappears
for longitudinal modes.

Experimental studies of the behavior of turbulence arising in a conducting
medium under the action of various factors (grate, overflown body, honeycomb,
etc.) can be subdivided into two kinds – with the mean velocity 〈u〉 = 0 and 〈u〉 �=
0. The importance of such subdivision is connected with the following. Besides
the energy flux along the spectrum, its mean helicity also plays an important role
in the behavior of a turbulent flow.

On the other hand, helicity generation depends on the properties of mean
velocity field [6]. As follows from the results of this paper, under a constant exter-
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nal magnetic field, the mean helicity
magnitude depends of the mean ve-
locity gradient and vorticity. Hence,
even at relatively weak magnetic
fields, when the anisotropy they in-
troduce is small, the helicity can play
a significant part in the behavior of a
turbulent flow.
In sufficiently weak magnetic fields (at
sufficiently low N), when their influ-
ence on the Euler equation in the iner-
tial interval can be neglected, energy

Fig. 1.

and helicity fluxes remain governing parameters. Depending on their ratio, the
spectrum is specified by Eq. (1).

In very low magnetic fields, when the helicity generation does not play a
significant part at the given flow velocity, the spectrum (1) is degenerated into the
spectrum

E ∼ ε2/3k−5/3. (3)

With increasing influence of the magnetic field, two situations are possible. If the
mean flow velocity is sufficient to lead to the generation of appreciable helicity in
weak magnetic fields, we obtain the following spectrum:

E ∼ η2/3k−7/3. (4)

If, however, it is not so, then we are dealing with a mode where the influence
of the magnetic field cannot be neglected. In this case, the anisotropy of the
flow properties, including turbulent ones, manifests itself. Just this defines the
subdivision of experimental results into cases with 〈u〉 = 0 and 〈u〉 �= 0.

Many experiments were aimed at the study of conducting fluid flows across
the external homogeneous magnetic field B0 (see, for example, [3, 5, 7, 8] and
references therein). In these experiments, correlation between turbulent fluctua-
tions of velocity field components aligned with the flow was studied. Practically in
all these experiments, the behavior of spectral energy density was as follows. At
low Stuart numbers, the spectrum changed with its growth from k−5/3 to k−7/3.
With its further growth, large-scale motion dimerization took place, while small-
scale motion remained three-dimensional. In this case, turbulence passed into an
intermittent mode with the spectrum k−11/3 − k−4. It is noteworthy that the
quasi-two-dimensional spectrum k−3 appeared in experiments (see, e.g., [3]), but
it was not limiting in the sense that the system remained three-dimensional at any
magnetic field values.

Whereas k−5/3 and k−7/3 at low Stuart numbers are due to the effect of energy
and helicity fluxes, steeper spectra are stipulated by different factors.

To explain the appearance of k−11/3, an assumption was made in [7] that in
this case the determining parameter in the inertial interval is the super-helicity
flux

ηω =
d(rotu · rotrotu)

dt
.

However, this conclusion is based only of the dimensionality of ηω value. Be-
sides, this value is not an integral of motion, and it is rather difficult to understand
why it should be conserved, and all other values should depend on it.

On the other hand, with increasing magnetic field intensity, turbulence, as
follows from experimental data, tends to an intermittent mode. In this case, in

164



MHD turbulent spectra formation in en external magnetic field

the vicinity of this transition, the properties of energy transfer ε along the spectrum
are changed. Why do we revert to the discussion of the behavior of ε ? It is due
to the fact that with growing magnetic field the fluctuations across and along the
magnetic field can be, apparently, uncoupled, i.e., to the first approximation, they
proceed independently, and Joule dissipation does not practically affect transverse
modes

We revert again to the case where energy flux in the inertial interval can be
a governing parameter (while the helicity flux η is determined by all the three
velocity components and cannot be an integral of motion). However, the change
in the properties of energy transfer in the vicinity of the transition to intermittency
leads to ε dependence on the coordinate and time, i.e. ε ⇒ ε(x), which was studied
in numerous papers starting from [11, 12]. Usually, such an approach is reduced
to the choice of a certain spatial region and averaging of ε(x) over this region.
On the other hand, the energy introduced into the system by an external force is
independent of the properties of the system in small scales. In case of ε dependence
on the coordinates, it seems more logical to us to pass to local characteristics, such
as densities of energy flux, and not to integral ones, i.e. to the densities of arriving
and dissipating energies.

The density of the arriving energy flux εV = d
〈
U ′2〉/dtdV , (where U ′ – tur-

bulent fluctuations in the force scale) is compensated, under stationary conditions,
by the energy flux density εV = dε(x)/dV . In this case, we obtain that εV be-
comes governing parameter. Repeating the arguments produced earlier, we obtain
that for the components transverse to the magnetic field in the inertial interval

E(k) ∝ ε
2/3
V k−11/3.

The second case covers experiments described in [9, 10]. In these experiments,
turbulence was excited in a conducting medium by a grate drawn vertically along
the magnetic field direction. Correlation characteristics of turbulent velocity field
were measured along B0.

As follows from these experiments, spectral properties of the attenuating tur-
bulence depend on the distance from the grate. While in the vicinity of the grate,
which had a nonzero channel filling ratio (i.e. possessed nonzero piston proper-
ties), a certain mean flow arose, while at a larger distance from the grate the flow
was practically absent.

As follows from experimental results at low N (0.6–0.7), in the vicinity of the
grate, an appreciable spectral interval with the spectrum close to k−7/3 is observed
near the grate.

As the distance from the grate increases, both the mean flow (its vorticity)
and helicity drastically drop, which leads to the formation of a broad interval with
the spectrum k−5/3 .

Joule dissipation exerts the greatest effect on spectral modes with k parallel to
B0, which corresponds to longitudinal B0 components of the correlation function.
In this case, it seems logical to choose the parameter γ = σB2

0/ρ in the capacity
of a governing parameter, and then the spectral energy density has the form

E(k) ∝ γ2k−3 .

Thus, this spectrum is a result of the increasing effect of the magnetic field on
the longitudinal modes of the turbulent field. Similar reasoning was suggested in
[9]. Note that “–3”-spectrum is usually identified with turbulence transition into
the two-dimensional regime. In fact, “–3”-spectrum connected with enstrophy con-
servation arises in two-dimensional turbulence similarly to “–7/3”-spectrum con-
nected with helical properties of a turbulent field in three-dimensional turbulence.
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However, “–3”-spectrum is present in 3D turbulence connected with longitudinal
components only.

Conclusion. In the present work we have examined the behavior of the
structural function of homogeneous incompressible turbulence velocity in the pres-
ence of an external homogeneous magnetic field.

On the basis of the study of governing parameters determining the behavior of
turbulent flow of a conducting fluid at relatively low and high Stuart numbers (such
as γ = σB2

0/ρ, helicity and energy fluxes, etc.), we have analyzed the properties
of spectral functions for longitudinal and transverse (with respect to the magnetic
field) components of the velocity field.

Spectra arising at relatively low Stuart numbers are close to helical-Kolmogorov
spectra both for longitudinal and transverse components observed in various ex-
periments. With growing magnetic field, flow anisotropy becomes more and more
appreciable in large scales, whereas in small scales turbulence remains three-
dimensional. However, for longitudinal and transverse modes, a differentiation
of governing parameters appears. While for a longitudinal mode Joule dissipation
is essential, and respectively, the governing parameter is γ, for transverse ones
energy and helicity fluxes are still important. At a still greater increase in the
magnetic field, turbulent velocity field becomes intermittent, which is expressed
by a considerable dependence of energy flux on the coordinate. In this case, a
new governing parameter appears which is connected with local properties of the
turbulent velocity field, namely, energy flux per unit mass and volume.
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