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Introduction. Hartmann layers are very thin (the thickness may be around
30 µm in mercury with a magnetic field of 1 T), and except in those layers, where
the shear is localized, the turbulence may be homogeneous. It is thus tempting
to try to consider the core flow as a homogeneous system and model the effect of
the Hartmann layers as extra terms in the evolution equations. Among the effects
of the magnetic field on the turbulence, the quite first one is the development of
an anisotropy, which becomes quite pronounced when the magnetic field is very
large. In the case of homogeneous turbulence, this anisotropy is particularly clear
in the Fourier space, since the Fourier transform of the Lorentz force depends on
the direction of the wave vector, but is independent of its magnitude [1]. The
energy carried by wave vectors parallel to the magnetic field B is rapidly damped
out in a time scale of the order of τJ = ρ/(σB2) (ρ is the density, τJ usually
names the Joule time scale ). The net result of the competition between the Joule
damping and inertia still leads to a time decay following a power law of the form
t−n with n ≈ 1.7 instead of 1.1 or 1.2 in ordinary isotropic turbulence [1]. In
physical space, the anisotropic Lorentz force leads to the elongation of eddies in
the direction parallel to B according to a law [4]

l‖/l⊥ ∼ (
σB2t/ρ

) 1
2 , (1)

where l‖ and l⊥ are the length-scales of a given eddy parallel and perpendicular to
the magnetic field. When the magnetic field is strong enough, eddies can elongate
to sizes comparable to the size of the whole domain h. According to (1), this
happens after a duration of order

τ2D = τJ (h/l⊥)2 , (2)
necessary to have l‖ ∼ h. In that case, eddies are column-like and one may say that
turbulence becomes Q2D. The effects we want to study here come from the influ-
ence of the Hartmann walls on the turbulence. This influence is at least twofold.
First, the presence of the walls just forces the velocity component perpendicular
to them to be zero, because it cannot vary significantly through the thin Hart-
mann boundary layer. Then, within the Q2D columns, the velocity vectors tend
to remain within the planes perpendicular to the magnetic field. The second in-
fluence of the Hartmann walls has its origin in one of the striking properties of
the Hartmann boundary layer, which is not a passive layer like the Blasius layer,
but which is a primary layer, capable to react on the core flow. This property is
the fact that a significant Joule damping remains present within the layer, where
the velocity cancels, whereas the electric field E does not. As a consequence, the
balance between E and u × B, which is present in the core and minimizes the
current density, is destroyed and the current density is locally very important (of
the order of σBu, whereas it is Ha less within the core, Ha =

√
σ/(ρν)Bh being

the Hartmann number built with the width between the Hartmann walls h). On
this basis, [4] have shown that the effective Joule damping time, which is then
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named the Hartmann time, is τH = Ha τJ = h/B
√

ρ/(σν). It may be much larger
than τJ , since it varies as B−1 (not B−2 as τJ).

1. Model formulation. According to what was described in the above
section, the turbulence can become Q2D as soon as τ2D is significantly shorter
than the eddy turnover time τtu = l⊥/u⊥. Then the velocity component parallel
to the magnetic field, which may be non-zero in the initial state, is submitted to
a linear damping in a time scale of the order of τ2D. This may be easily modeled
with the addition of the term −u‖/τ2D in the right-hand side of the equation for
u‖. The velocity components in the plane perpendicular to B are also affected by
some damping, but much less rapidly, as explained in Sec. 2. Indeed, they are only
submitted to the Hartmann damping, which may be expressed by the addition of
the term −u⊥/τH in the right- hand side of the equation for u⊥. The damping
force Fi associated with the Hartmann layers is, therefore, tentatively modeled by

Fx = −ux/τH , Fy = −uy/τH , Fz = −uz/τ2D, (3)
where the z-direction has been chosen as the wall-normal direction. The form (3)
cannot be used as such since it would not respect the incompressibility of the flow.
However, it can easily be projected on its solenoidal part FS

i . Using the Fourier
representation, FS

i can be written as

FS
i = (δij − kikj

k2
)Fj . (4)

Again in Fourier representation, the actual components of FS
i are then,

FS
x = −ux/τH + (1/τ2D − 1/τH)

kxkz

k2
uz (5)

FS
y = −uy/τH + (1/τ2D − 1/τH)

kykz

k2
uz (6)

FS
z = −uz/τ2D + (1/τ2D − 1/τH)

kzkz

k2
uz (7)

Aside from a simple linear damping, incompressibility thus requires also a
wave vector dependent contribution in order to take into account the effect of
Hartmann layers. In (7), we see that this k-dependent contribution has exactly the
same functional form as the traditional Joule damping term. It comes, however,
with the opposite sign. When τ2D and τJ are of the same order, the traditional
Joule damping can, therefore, be compensated by this extra term (since in general
τH � τJ ) and it is thus expected that anisotropy in the parallel component will
remain weak in that case. Its decay will be dominated by the simple damping term
−uz/τ2D at all times. For the perpendicular components, two phases of decay have
to be distinguished. In the first one, 0 < t < τ2D, the k-dependent terms will exert
their effects. In the second one, τ2D < t, their influence will become negligible as
uz is damped very rapidly. In this second phase, the decay will proceed as a simple
damping with a characteristic time τH .

2. Numerical results. The set of equations we are solving are:

∂tui = −∂i(p/ρ) − uj∂jui − A2

η
∆−1∂z∂zui + FS

i + ν∆ui, (8)

where FS
i is given by (5)–(7) (hereA = B/

√
µρ denotes the Alfven velocity).These

equations are solved using a pseudo-spectral code in a cubic geometry. There so-
lutions of our run are 2563 Fourier modes. The initial condition for the velocity
consists of a developed turbulence field that is adequately resolved in the compu-
tational domain adopted (it is obtained from a purely hydrodynamic case). Some
of its characteristics are listed in the Table 1.
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Table 1. Turbulence characteristics of the initial velocity field. All quantities are in MKS units.

Resolution 2563

Box size (lx × ly × lz) (2π)3

Rms velocity 2.35
Viscosity 0.006
Integral length-scale (L = 3π/4 × (

∫
κ−1E(κ)dκ/

∫
E(κ)dκ)) 0.944

Re = uL/ν 370
Dissipation (ε) 14.56

Dissipation scale (γ = (ν3/ε)1/4)) 0.0110
kmaxγ 1.41

Microscale Reynolds number (Rλ =
√

15/(νε)u2) 72.36
Eddy turnover time (τ = L/u) 0.402

In order to induce a sufficient amount of anisotropy in the flow, we have chosen
a moderate value of the interaction number: N = τtu/τJ = 10. Giving the values of
u and L (see Table 1) implies that the Joule time is equal to τJ = L/(uN) = 0.0402.
In this run we also assume that τ2D = 0.0402 = τJ (looking at (2) this corresponds
to a case, where the channel width is equal to the initial l⊥). From these values,
one also easily computes that Ha = 60.8 and τH = 2.45.

2.1. Decay of kinetic energy. At the beginning of the simulation all three
components of the velocity field have approximately equal energy (the initial flow is
isotropic). As displayed in Fig. 1, the energy of the parallel component is dissipated
much faster than the one of the perpendicular components (since τ2D � τH). After
a time t = 2τ2D, the parallel component has been virtually completely dissipated.

2.2. Anisotropy. To measure anisotropy, we use the following diagnostics:

Gij,kl =
〈
(∂iuj)

2
〉
/
〈
(∂kul)

2
〉
. (9)

They measure the relative strength of velocity gradients in different directions
and for different components of the velocity field. For instance, it is easy to show
that in isotropic turbulence one should have ([3]):

G11,21 = G11,31 = 0.5, G12,22 = G13,33 = 2, G12,32 = G13,23 = 1. (10)

In our simulations, the mean magnetic field is directed along the z-direction
(parallel direction). If the flow becomes 2D perpendicular to this direction, then
one must have:

G3j,αl → 0, for (j, l) ∈ (1, 2, 3) and α ∈ (1, 2). (11)

Fig. 1. Evolution with time
of the kinetic energy. Solid
line:
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Fig. 2. Anisotropy coefficients
Gij,kl. See figure for legend.

In Fig. 2 several Gij,kl are plotted. From the figure it is clear that the sym-
metry x ↔ y is well respected. Also, the component uz remains significantly
more isotropic than the perpendicular components with respect to this diagnos-
tics, although with time it also evolves to a state with weaker variations along the
parallel direction compared to the perpendicular directions. This behavior is well
in line with the discussion in Sec. 1. On dimensional grounds, all Gij,kl displayed
in Fig. 2 should be of the order l2⊥/l2‖. Here we see that this ratio depends on
the component of the velocity field considered. The ratio is larger for the parallel
component than for the perpendicular components. As a consequence, we see that
Eq. (1) becomes component-dependent in the presence of the Hartmann damping
modeling (5)–(7).

3. Conclusions. The idea of a pre-existing isotropic turbulence suddenly
submitted to a uniform magnetic field, initially introduced by [2], is a purely ide-
alized concept, since, in any experiment, during the growth of the magnetic field,
eddy currents and the associated Lorentz forces are generated, which are com-
pletely neglected here. In spite of this assumption, which would deserve quite a
complex analysis and may be not justified at all in many experimental situations,
following Moffatt and others, we focus on the mechanisms, by which the homoge-
neous turbulence tends to become 2D and decays. Contrary to previous numerical
studies on 3D homogeneous turbulence subject to a constant mean magnetic field,
we try to incorporate the influence of distant Hartmann layers on the flow. The
spirit behind the model introduced in Sec. 1 is to reproduce the damping gener-
ated by the Hartmann layers though damping terms of appropriate time scales.
However, to respect the incompressibility condition, a wave vector dependent con-
tribution to the model have to be considered. The effect of the model is, therefore,
twofold. First, the velocity component parallel to the magnetic field undergoes a
much more rapid damping than the perpendicular components. Less obviously,
this parallel component remains largely isotropic throughout the decay due to the
wave vector dependent contribution in the model.
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