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Introduction. We investigate by two- and three-dimensional direct numer-
ical simulation (DNS) and linear stability analysis (LSA) the transition to turbu-
lence in a flat-plate boundary layer controlled by a steady, wall-parallel and stream-
wise orientated Lorentz force. The fluid considered is incompressible, Newtonian
and low-conductive. Using a free-stream velocity U∞ and an inflow displacement
thickness δ1 to nondimensionalize the Navier–Stokes equations, the Lorentz force
term reads fl = (Z a2)/(π2Re)exp(−πy/a), where a is the actuator’s nondimen-
sional spacing of electrodes and magnets, Re is the Reynolds number (based on
δ1), and Z is a modified Hartmann number [1], describing the ratio of Lorentz and
viscous forces. If Z = 1, any initial Blasius velocity profile will evolve towards an
exponential one, thereby gaining a critical Reynolds number, which is increased
by two orders of magnitude, as suggested first by Gailitis and Lielausis [2] in the
early 1960s. In this paper, we address the question about the stability properties
of the intermediate profiles. Hereby, we restrict to the case of shortest transition
length from Blasius to an exponential profile, which occurs at δBlasius

1 /δexp
1 ≈ 1.4

[3].

1. Two-dimensional DNS.
1.1. Numerical method. To investigate the impact of the Lorentz force on

Tollmien–Schlichting (TS) waves, we first performed 2D simulations based on a
spectral element method by Karniadakis [4]. The rectangular computational do-
main extending over 990 δ1 in streamwise direction and 65 δ1 in wall-normal direc-
tion was decomposed into 594 elements of polynomial degree 9. Reynolds number is
chosen to 360, and the electromagnetic actuator at the bottom wall starts 200 units
from inflow at ξ = 0 towards the outflow boundary where ξ = π2(x− 200)/(a2Re)
denotes a new shifted streamwise coordinate used in the following. Boundary
conditions include a Blasius velocity profile at inflow, no-slip condition u = 0 at
bottom wall, and outflow condition (n · ∇)u = 0 at both downstream and free-
stream boundary. Small amplitude disturbances 0.4 ≤ F+ ≤ 3.5 of nondimensional
frequency F+ = (2πfν/U2∞) × 104 are introduced near the inflow from which TS
waves evolve. A sponge region technique [5] prevents unphysical reflections of
small scale velocity fluctuations at the outflow boundary.

1.2. Results. In uncontrolled case TS waves grow and decay corresponding
to non-parallel linear stability theory. Already when applying a compareably small
Lorentz force Z = 0.05, TS waves of all investigated frequencies are damped within
the computational domain. For the case Z = 1 shown in Fig. 1, the growth rate,
based on the maximum root mean square value over wall-normal direction of the
streamwise velocity component, is minimum in a region near the onset of control
and increases as the velocity profile approaches the exponential state.
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Fig. 1. Evolution of TS wave growth rates for selected frequencies during transition from
Blasius to exponential profile.

2. Linear Stability Analysis. In order to get further insight into the
(temporal) stability behavior of the intermediate (local) velocity profiles, a lin-
ear stability analysis has been performed. Assuming small velocity disturbances
Φ(y)eiα(x−ct) to a base profile U(y), linearization leads to the Orr–Sommerfeld
equation. Hereby, real values of α and the real part of c denote wave number and
phase velocity of the disturbance, respectively. Negative imaginary parts of c then
signal instability of the profile. The boundary conditions are that the disturbance
and its first derivative have to vanish at y = 0 and y → ∞.

2.1. Numerical method and validation. We have implemented a Chebyshev
tau method based on the modifications described by Gardner et al. [6] to avoid
spurious eigenvalues. An exponential mapping x = 2 e−ρy − 1 transforms between
the semi-infinite wall-normal coordinate y and the Chebyshev interval [−1, 1] of
the new coordinate x. Hereby, ρ denotes an additional mapping parameter. The
discretization procedure results in a generalized eigenvalue problem of expansion
order N−2 which has been solved by a standard LAPACK procedure. Extensive
resolution tests and validation runs for both the Blasius boundary layer profile and
the exponential velocity profile have been performed ensuring the accuracy of the
method. The critical Reynolds number of the exponential profile U(y) = 1 − e−y
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Fig. 2. Curves of neutral stability vs. the Reynolds number at three downstream locations:
ξ = −0.246 (close to the Blasius profile), ξ = 0.246 (during transition) and ξ = 1.722 (almost
exponential). Left: wave number α, right: phase velocity cr.
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Fig. 3. Left: velocity profiles at three downstram locations (see Fig. 2). At u/U∞ = 0,
additionally the deviation from the exponential profile is shown. Right: critical Reynolds number
vs. the downstream coordinate. The Lorentz force starts beginning from ξ = 0.

has been found to Reexp
c = 47119.5 at αc = 0.16225 and cr = 0.15586757 at

N = 102 and ρ = 0.1 which is in good agreement to results of Priede [7] and Lakin
& Reid [8].

2.2. Results. The analysis has been applied to velocity profiles originating
from the above DNS. As the Lorentz force is switched on at ξ = 0, Fig. 2 shows
curves of neutral stability vs. Reynolds number at three different downstream
locations. Upstream the Lorentz actuation at ξ = −0.246, the profile is close
to the Blasius shape (because of a small upstream influence due to the elliptic
nature of the Navier–Stokes equations), resulting in a critical Reynolds number
only slightly above ReBlasius

c = 519 (vertical dotted line). Far downstream, at
ξ = 1.722, the profile is almost exponential, resulting in a critical Reynolds number
slightly above Reexp

c (vertical dotted line). However, downstream the onset of the
force at ξ = 0.246, the critical Reynolds number is clearly larger than Reexp

c .
Fig. 3 shows the corresponding velocity profiles (additionally, their deviations

from the exponential profile) and the behavior of the critical Reynolds number
vs. the downstream coordinate ξ. The action of the Lorentz force leads to inter-
mediate velocity profiles, which are more stable than the asymptotically reached
exponential profile.

Recent LSA results of a velocity profiles extracted from the simulation of
the boundary layer equations obtained by a Chebyshev collocation method show
similar results [9].

3. Three-dimensional DNS. For 3D DNS, the domain size is 26 δ1

in the homogeneous, periodical spanwise direction, allowing for a Fourier ansatz
for pressure and velocity where up to 128 modes were used. Fig. 4 shows vortex
visualization by means of the λ2 method [10] of the predicted flow when applying
different Lorentz force amplitudes 0 ≤ Z ≤ 1. The growth of 3D disturbances
due to the secondary instability mechanism is clearly visible since Λ-vorticies form
in all cases, even though their intensity (vorticity) lowers as Z is increased. In
uncontrolled case Ω-vorticies emerge, followed by a rapid breakdown to turbulence.
This process is delayed when applying a moderate Lorentz force (Z = 0.1) or even
stopped for Z ≥ 0.2, where Λ-vorticies remain stable and dissipate downstream.

4. Discussion. DNS and LSA results confirm the expected increased
stability of the controlled flow. Depending on Lorentz force strength transition to
turbulence is delayed or even stopped. Surprisingly, both DNS and LSA results
suggest interesting stability characteristics of the intermediate velocity profiles

147



T.Albrecht, R.Grundmann, G.Mutschke, G.Gerbeth

Fig. 4. Transition to turbulence controlled by the Lorentz force.

investigated here. We would like to mention that critical Reynolds numbers larger
than the one for the exponential profile were also found in other problems [11], and
supercriticality of the exponential suction profile as found by Hocking [12] gives
some support to our results.

By three-dimensional DNS we show that transition to turbulence can be
stopped even in its late stage. While the evolution of Λ-vortices from former
two-dimensional TS waves remains almost unchanged, the emerge of Ω-vortices is
supressed with increasing Lorentz force strength, thus relaminarizing the flow.
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