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Introduction. We investigate the flow of an electrically fluid driven by a
rotating magnetic field (RMF) in a finite-length cylindrical container. Stirring by
the RMF plays an important role in applications such as single crystal growth or
in metallurgical processes. From a practical point of view, the effect of the RMF
on the conductive fluid is characterized by the generation of a primary swirling
flow (Moffatt [1]). Furthermore, in the case of a closed container, Bödewadt-type
layers are created at the axial boundaries which, in turn, drive a weak meridional
flow. Several authors, e.g., Priede & Gelfgat [2], Kaiser & Benz [3], Mössner &
Gerbeth [4] carried out axisymmetric simulations of the laminar and near-critical
flow regimes. However, Grants & Gerbeth [5] found that the first linearly unstable
mode is three-dimensional in a wide range of aspect ratios. This implies that any
numerical study of supercritical flow requires a three-dimensional approach. The
aim of this work is to present a first insight in the 3D structures and dynamics
of the flow in the near-critical and weakly turbulent regimes by means of direct
numerical simulation (DNS). The underlying mathematical model rests upon on
the so-called low-frequency/low-induction approximation, which is appropriate for
stirring of liquid metals and semiconductor melts.

Mathematical model. We consider a fluid with constant properties, i.e.,
density ρ, kinematic viscosity ν and electric conductivity σ. The computational
domain is a closed cylinder of height H , diameter D = 2R and non-conducting
walls. The magnetic field of induction B rotates with a constant angular velocity
ω about the axis. The resulting flow is governed by the Naviers-Stokes equations,

∂tu + ∇ · uu = −1
ρ
∇p + ν∇2u +

1
ρ
f ,

∇ · u = 0 . (1)

Under low-frequency/low-induction conditions (Davidson & Hunt [6]) the
Taylor number (2) is the only relevant parameter:

Ta =
σωB2R4

2ρν2
. (2)

Furthermore, the mean part of the Lorentz forces is independent on the ve-
locity field and is defined in Eq. 3 (Gorbatchev, Nikitin & Ustinov [9]):

f(z, r) =
1
2
σΩB2

[
r − R

∞∑
k=1

2J1(λkr/R) cosh(λkz/R)
(λ2

k − 1)J1(λk) cosh(λkH/2R)

]
eϕ. (3)

Here J1is the Bessel function of the first kind and λk are the roots of its first
derivatives. The equations are discretized in space using the pressure-stabilized
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Fig. 1. Mean velocity field: (a), (b) uϕ at Ta = 4.5.104 and Ta = 3.105; (c), (d) (ur, uz) at
Ta = 4.5.104 and Ta = 3.105.

Petrov–Galerkin finite element method (PSPG-FEM) and integrated in time by
means of the 2nd order Adams–Bashforth method. The numerical model was
implemented on top of MG (multilevel grid) package (Stiller & Nagel [7]). The
validation for several test cases proved the second-order convergence in time and
space (Stiller et al. [8]).

Results. DNS were carried out at various Taylor numbers ranging from 1.1
to 7.5 Tacr, where Tacr = 40079 (G.Gerbeth, private communication [5]). In the
following, we focus on Ta = 4.5.104 and Ta = 3.105. For the case with the Taylor
number 4.5.104 the computational grid consists of 7.1.106 tetrahedral elements or
1.3.106 nodes. However, for Ta = 3.105 the grid was locally refined to resolve the
thin Bödewadt type boundary layers developing at the top and bottom walls. The
resulting grid consists of 9.7.106 elements and 1.8.106 nodes, respectively.

Fig. 1 shows the mean velocity field at Ta = 4.5.104 and Ta = 3.105. In the
averaging process the axial and vertical symmetries were exploited. Fig. 1a and 1b
demonstrate the existence of a widely homogeneous swirling flow. The meridional
flow is depicted in Fig. 1c and 1d. Near the top and bottom, the formation of
Bödewadt layers is evident. Except of the wall layers, the meridional flow gets
weaker with increasing Taylor numbers. Fig. 2 shows a snapshot of the instanta-
neous velocity field in a meridional section. The primary flow is homogeneous in
the core region, but becomes more irregular near the vertical walls (see Fig. 2a
and 2b). This fact can be attributed to the action of Taylor–Görtler type vortices.
The existence of those vortices is confirmed by Fig. 2c and 2d which depict the
meridional velocity components.

The Taylor–Görtler vortices have an important impact on the instantaneous
velocity distribution. To visualize the vortex structures, the second invariant of
the fluctuation velocity gradient was used (Fig. 3). Obviously, the TG vortices

a b c d

Fig. 2. Snapshot of the instantaneous velocity field in the meridional section: (a),(b) uϕ at
Ta = 4.5.104 and Ta = 3.105, (c), (d) (ur , uz) at Ta = 4.5.104 and Ta = 3.105.
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Fig. 3. Taylor–Görtler type vortices at the Taylor numbers 4.5.104 and 3.105.

become more slender and unstable with the increasing Taylor number. In par-
ticular at Ta = 3.105, bifurcation, merging as well as tearing and reconnection
of vortices can be observed. Finally, Fig. 4 shows a typical energy spectrum at
Ta = 3.105. Evidently, no harmonic oscillations can be observed. In the first part
of the inertial range, the slope is close to the classical k−5/3 decay, later the slope

Fig. 4. Energy spectrum at the Taylor number 3.105.
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is considerably steeper. Recent results by Cramer & Varshney (private communi-
cation) suggest that a similar behaviour can be found also in experimental data.
A further discussion of these observations will be the subject of the future work.

Conclusion. The RMF driven flow at the near-critical Taylor numbers was
investigated by means of DNS. For all cases, the flow was characterized by a
primary azimuthal flow and a weak secondary meridional flow. In agreement with
Grants & Gerbeth [5], the flow of the near-critical Taylor number is unsteady and
three-dimensional. The existence of Taylor–Görtler vortices and their impact on
the instantaneous flow field was demonstrated.
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