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Introduction. The traveling magnetic field (TMF) is one of various MHD
tools used for the electromagnetic control of melt flows in bulk semiconductor crys-
tal growth [1]–[3]. Conversely to the widely used rotating magnetic field (RMF)
the traveling magnetic field yields a possibility to create or control meridional melt
circulations directly, i.e., without unnecessary inducing of a non-uniform rotational
flow. This possibility initiated a number of recent studies devoted to the TMF-
driven and TMF-controlled flows regarding various crystal growth applications in
terrestrial and microgravity environment (see [1]–[7] and references therein).

One of the important problems directly connected with the TMF driving and
control of melt flows in crystal growth processes is the stability of the resulting
time-average flow. The study of this issue was started in [4], where the simplest
possible expression for TMF driving forces was used. The model considered in [4]
corresponds to small dimensionless TMF wavenumbers α and small dimensionless
circular frequency γ, and does not account for a possible skin-effect. The present
study extends results of [4] to the cases of moderate and large wavenumbers. The
TMF driven flow in a cylindrical container is considered. In the following we dis-
cuss how the time-averaged TMF force and the TMF-driven flow patterns change
with the growth of TMF wavenumber and TMF frequency. Then we study the
three-dimensional stability of axisymmetric TMF-driven flows for different aspect
ratios of the container and the TMF wavenumber and dimensionless frequency
varying independently from 1 to 20. The calculations are performed using the
global Galerkin method described in [8].

With the increase of the TMF wavenumber the time-averaged TMF driving
force exhibits a significant skin-effect. We study how the flow varies with the TMF
wavenumber and show that intensity of the TMF-induced vortex grows rapidly
with the increase of the TMF wavenumber from a small value α < 1 to a moderate
value 1 < α < 10, which depends on the aspect ratio and the TMF force amplitude.
With further increase of α the intensity slowly decreases. A similar change of the
flow intensity is observed when the parameter γ is varied in the interval 1 ≤ γ ≤ 20.

The present study shows that the dependence of the stability properties of
the flow on the TMF wavenumber and the skin depth is rather complicated. The
details are given in [7]. The marginal stability curves contain non-monotonic
parts with turning points and reinstatement of stability. Generally, the critical
amplitude of the electromagnetic force steeply reduces with the increase of α or
γ from the value α = 1 (γ = 1) and then slowly increases for α > 10 (γ > 10),
thus behaves correspondingly to the increase or decrease of the intensity of the
main TMF-induced vortex. The patterns of the most unstable perturbations show
that the transition from an axisymmetric to the three-dimensional flow should be
attributed to the instability of the main vortex and not to the thin skin-layer, even
for large values of α or γ.
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1. Formulation of the problem. We consider a flow of a Newtonian
incompressible electrically conducting fluid in a cylindrical enclosure 0 ≤ r ≤ R,
0 ≤ z ≤ H under action of a magnetic field traveling along the z-axis. It is
assumed that at the cylindrical sidewall the vector potential of the magnetic field
is given by

Ar = 0, Aθ = A0ei(ωt−α̃z), Az = 0 , (1)

where α̃ and ω are the wavenumber and the circular frequency of the traveling
magnetic field.

Assuming that magnetic Reynolds number is small the effect of the fluid flow
on the magnetic field is neglected. Additionally, we assume that the flow is de-
composed into time-averaged and oscillating parts and that the amplitude of the
oscillating part is much smaller than that of the average part. This assumption
is justified for large frequency of the magnetic field, which usually is about 50Hz
or even larger. Under the assumptions made the time-averaged part of the flow is
driven by a time-averaged electromagnetic force f and is described by the dimen-
sionless momentum and continuity equations

∂v
∂t

+ (v · ∇)v = −∇p + ∆v + f , ∇ · v = 0 , (2)(3)

where v is the fluid velocity and p is the pressure. The scales of length, time,
velocity and pressure are R, R2/ν, ν/R and ρν2/R2, respectively, where ρ is the
fluid density and ν is the kinematic viscosity.

The expression for the electromagnetic force f depends on a configuration of a
magnetic field inductor. In the case of an infinite cylinder in an infinite inductor the
problem for the magnetic and electric fields allows for an analytical solution, which
yields the following expression for the time-averaged electromagnetic force [5]:

fr = −Ft
Im [I1 (β∗r) I0 (βr)]

|I0 (β)|2 , fθ = 0, fz = Ftα
|I1 (βr)|2
|I0 (β)|2 (4)

HereFt = A2
0ωσR2/2ρν2, α = α̃R, β =

√
α2 + iγ, γ = σωµR2, and µ is the

magnetic permeability. An additional parameter defining the flow is the aspect
ratio of the cylinder A = H/R. More complicated expressions, which take into
account the finite extent of the inductor and the cylinder, as well as the distance
between them, were obtained recently in [6]. It should be noticed that the radial
component of the electromagnetic force (4) is potential and therefore does not
affect the flow velocity. However, it is not small compared to the axial component
and should be taken into account if correct pressure distribution is needed.

The value of dimensionless wavenumber is equal to α = 2πR/L, where L
is the TMF wavelength. At large L the wavenumber tends to zero. Assuming
additionally that the dimensionless TMF frequency gamma is also small the ex-
pression for the z-component of the electromagnetic force (4) can be approximated
asymptotically as

fz = Ftα |β|2 r2

4
= Fb

r2

4
, F b = B2

0

ωσα̃R5

2ρν2
(5)

This expression was used for the stability analysis in [4]. In Fig. 1 we compare the
force fz for γ = 1 and different α using expressions (4) and (5). It is seen that
Eq. (5) gives a good approximation only for α < 1 and γ < 1. Equations (4) must
be accounted for already at α = 2. For α > 3 the force is characterized by a rapid
growth near the cylinder wall (r = 1), i.e., the well-known skin-effect is observed.
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Skin-effect influence

Fig. 1. Dependence of the time-averaged electromagnetic force on the parameters α and γ.

Assuming that the TMF wavelength is of the order of the cylinder radius the
value of α can be estimated as 2π, and exceeds ten for L < R/2. In our calculations
we consider 1 ≤ α ≤ 20, and 1 ≤ γ ≤ 20, which allows us to study the influence
of the skin-effect on both flow patterns and their stability. For α < 1 and γ < 1
results of [4] apply. As in [4] we consider the no-slip boundary conditions on all
the borders.

Fig. 2. Flow patterns for A = 2, Ft = 105.

2. Results and conclusions. The
details on the steady axisymmetric flow
patterns and the stability results are
given in [7]. They can be summarized
as follows.
With the increase of α or γ from a small
value the flow intensity increases. Be-
yond α ≈ 6 and γ ≈ 7 the intensity
slowly decreases. This is illustrated in
Table 1 for the growing value of α. Ex-
amples of the calculated flow patterns
are shown in Fig. 2. In all the figures
the flow rises along the cylindrical side-
wall and then descends along the axis.
The stability diagrams corresponding
to the onset of three-dimensional insta-
bility with respect to the perturbations
represented as a(r, z) exp

[
i(kθ + λt)

]

were computed for the aspect ratios of
the cylinder H/R = 1, 2, 3 and 4.
Examples of the stability diagrams are
given in Figs. 3 and 4.
The calculated dependencies Ftcr(α)
and Ftcr(γ) are not always smooth and
sometimes can contain turning points
and reinstatement of stability, so that
the axisymmetric base flow can be-
come unstable at Ft

(1)
cr , then stable at

Ft
(2)
cr > Ft

(1)
cr , and finally unstable at

Ft
(3)
cr > Ft

(2)
cr . This can lead to a com-

plicated dynamics in the supercritical regimes and should be taken into account
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Table 1. Maximal and minimal values of ψ, vr and vz for A = 2, γ = 1, and Ft = 105.

α = 1 α = 2 α = 4 α = 6 α = 8 α = 10

ψmin -25.78 65.143 -123.37 -143.63 -148.52 -147.50
vrmin -53.702 -214.39 -480.62 -562.16 -563.66 -532.61
vrmax 143.45 318.51 558.00 638.21 639.99 602.91
vzmin -189.95 -361.84 -659.65 -776.94 -813.53 -819.93
vzmax 155.36 414.83 800.58 949.85 1005.1 1017.7

Fig. 3. Critical curves for A = 2 and 4;
α = 1, 1 < γ < 2.

Fig. 4. Critical curve for A = 2, α = 1.

if time-dependent calculations are performed. On the basis of the patterns
of the most unstable three-dimensional perturbations it was concluded that the
transition from an axisymmetric to a three-dimensional flow state takes place
due to instability of the whole TMF-induced vortex, and not due to disturbances
developing in the skin-layer.
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