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Introduction. MHD instability in annular linear induction pumps (ALIP)
arising in the conditions of large magnetic fields induced in liquid metal (magnetic
Reynolds number Rm s > 1) has been studied for some time both theoretically
and experimentally [1]–[6]. The manifestation of MHD instability is a non-uniform
liquid metal velocity profile, pressure and flow rate pulsations, an ALIP duct and
loop pipes vibration. The 1D ”jet” model [1, 2, 7, 8] showed the existence of
secondary flows, allowed to estimate qualitatively the velocity profile, asymptotic
values of pump pressure, showed relatively good qualitative agreement with the
experiments.

2D models allowed to predict [3] the vortex secondary flows similar to the
rotation stall in high-pressure axial compressors and to draw a flow picture in
an ALIP [6]. Here a completely new 2D mathematical model for analysis of the
flow pattern in the ALIP and its characteristics is described and tested over the
experimental data.

1. Model description. The scheme of the model is shown in Fig. 1.
Liquid metal flows in the x-direction in the duct of height 2b placed between two
ferromagnetic surfaces with a current layer at one of them. The active length of
the inductor is 2pnτ , where 2pn are the pole number, τ is the pole pitch; Lsh is
the equivalent length of zones with account for a magnetic flux shunting at the
inductor edges; x0 is a calculation region outside the inductor.

The applied and induced magnetic fields have z-components only
B0 =

(
0, 0, B0(x, y)

)
, b = (0, 0, bz(x, y)), which are averaged over a non-magnetic

gap 2δ0. The velocity components U = (u, v, 0) are averaged over the duct height
as well.

The following system of equations is to be solved:
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Here Rme = Rm′(1 + σkbk/σb); σk, σ is the electric conductivity of the
duct walls and liquid metal; 2bk is the duct walls thickness; Rm′ = Rm0(2b/2δ′);
Rm0 = µ0σω/α2 is the magnetic Reynolds number; α = π/τ ; 2δ′ = 2δ0kδkµ

is an equivalent non-magnetic gap, taking into account the inductor tooth-slot
structure and steel magnetization; u∗ = u(α/ω), v∗ = v(α/ω), x̄ = xα, ȳ = yα are
the dimensionless velocities and coordinates. In Navier–Stokes equations (2), (3)
the averaging of the pulsating components with Reynolds procedure and over the
duct height is applied. Here νeff is the effective viscosity (a sum of laminar and
turbulent viscosity), cf is the local friction coefficient at the duct walls. Boundary
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Fig. 1. Model for calculation.

conditions are the following:
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where L = Ls + 2x0.
The applied magnetic field was obtained as a superposition of the magnetic

fields from the currents in the inductor slots as Ḃ0 = Ḃ0meiωt, where Ḃ0m(x, y) =
Ḃ0mfy is a complex amplitude. Its dependence on the y-coordinate may be taken
from the experiment or, as in our case, from a model-type dependence f(y) =
1 + 0.1 cos(y/R), y ∈ [0, 2πR]. The induced magnetic field was defined as ḃz =
bRe
z + ibIm

z .
The electromagnetic force components were obtained with the use of electric

current densities in the liquid metal. Pressure p was defined from the Poisson
equation following from Eq. (2–4). Two types of the inlet velocity profile were
used: uniform, u0 = us, us is a mean flow rate velocity, and non-uniform, u0 =
us(1 + 0.1 cos(y/R)).

Numerical calculations were performed by the method of finite difference on
a displaced uniform mesh (the points for calculating velocity were displaced with
regard to the points for calculating pressure and magnetic field). Eq. (1) and
Eq.(2), (3) were split applying a stabilizing correction factor. Convective terms in
Eq. (2), (3) were approximated with upwind differences. The Poisson stationary
equation was solved by iteration procedure and successive upper relaxation.

The following initial conditions were used: the induced magnetic field was
equal to zero; the velocity components at all x were equal to that at the entrance
to the calculation region.

The above described mathematical model (EMP-MHD2D) was used to ana-
lyze the electromagnetic and hydrodynamic characteristics of the electromagnetic
pump ALIP-2 described in [6]. The MHD instability in this pump characterized by
a non-uniform distribution of the magnetic field over azimuth and low frequency
pressure pulsations was studied experimentally at a large extent [6]. The liquid
metal velocity was not measured directly in this experiment, but the distribu-
tion of its x-component over the duct length and azimuth may be judged by the
distribution of the magnetic field, as shown in [5].

2. Results of calculation. Numerical modeling results are presented in
Figs. 2–5 for Rm′ = 2.94 and s = 0.72. As a result of calculations, the 2D model
demonstrates two types of the liquid metal flow. For Rm′ s less than some critical
value Rm′ s ≈ 1.4 for the pump tested-fully a uniform flow with v = 0 is realized
in the whole calculation region in the absence of the applied magnetic field and
inlet flow velocity non-uniformity. Low non-uniformity of the applied magnetic
field results under these conditions in a low non-uniformity of the flow velocity.
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(a) (b)

Fig. 2. Instantaneous velocity field
(duct inlet – at the left, vertical lines –
inductor boundaries; (b), (c) – time mo-
ments 0.20 s later than (a) and (b), cor-
respondingly).

(c)

The pressure developed by the pump has a component pulsating in time with a
double supply frequency (DSF) of the feeding current only.

At Rm′ s larger than this critical value, the flow is still uniform in the ab-
sence of outer non-uniformity. But in the presence of the applied magnetic field
or inlet velocity non-uniformity, there exists a strong flow non-uniformity with
large-scale vortices in the inductor region, which are transferred from the inlet to
the outlet and in the azimuthal direction. An example of such vortices is shown in
Fig. 2 for some time moments. The larger the Rm′ s values, the more non-uniform
becomes the flow – azimuthal and longitudinal velocity components become com-
parable, and the azimuthal displacement of the vortices becomes large. The pump
pressure in this regime contains high and low frequency pulsations (Fig. 3). The
frequency spectrum of the pressure pulsations is shown in Fig. 4 and qualitatively
coincides with the experimental one [6]. The flow character fits qualitatively with
the calculated one in [6], though the models differ significantly.

The averaged over time calculated velocity profiles are shown in Fig. 5 for
some cross-sections along the duct length. Results of calculation over the 1D model
(EMP2D-JET) [8] are shown for comparison as well. The calculation results show
that at s = 0.47 the degree of non-uniformity increases from the duct inlet to the
outlet, while at s = 0.72 and s = 0.78 the non-uniformity is larger, on the one
hand, and increases up to about 3/4 of the duct length and decreases further on,
on the other hand. The velocity maximum values have physical sense for the 2D
model, while for the 1D model they are too large. The calculation results for the
averaged velocity profiles correspond qualitatively well to the experimental results
on the magnetic field distribution [6].

Fig. 3. Pressure developed by the pump. Fig. 4. Spectrum of the developed pressure.
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Fig. 5. Time averaged velocity profiles over az-
imuth (1, 2, 3 – 1/4, 1/2, 3/4 of the inductor
length; 4 – inductor outlet; 5 – 1D model calcu-
lation).

The pump pressure ∆p (independent on the time component) calculated over
the 2-D model corresponds within 3–9% to the experimental data and is close to
the results of the 1D model (see Table 1).

The amplitude of the main low frequency pulsation δplow calculated over the
2D model is compared to the experimental data in Table 1; the difference may be
explained partly by the fact that the model type non-uniformity of the applied
magnetic field was used in the analysis, which differs from the real one. The 1D
model does not allow to calculate the low frequency pressure pulsation.

The DSF pressure pulsation amplitudes ∆p2f calculated over the 2D model
are in 3–4 times higher than the experimental ones (Table 1), but still closer to
the experiment than calculated over the 1D model.

The electromagnetic pressure ∆pem was calculated by integrating the x-
component of the electromagnetic force over the entire calculation region.

Table 1. Comparison of some calculated and experimental ALIP characteristics.

Slip, ∆p, 105Pa δplow/δpem δp2f /δpem

s Exp-nt 1D mod. 2D mod. Exp-nt 2D mod. Exp-nt 1D mod. 2D mod.

0.47 2.12 2.42 2.19 0.03 0.125 0.076
0.72 2.78 2.99 2.94 0.05 0.012 0.02 0.127 0.050
0.78 2.87 3.14 3.12 0.05 0.059 0.01 0.123 0.036

3. Conclusion. (1) The 2D model to analyze the MHD instability in an
ALIP has been developed and tested. The numerically obtained flow patterns are
presented for uniform (Rm s < Rmcrit), and non-uniform (Rm s > Rmcrit) types
of the flow, the latter being characterized by large vortices, moving in axial and
azimuthal directions. For the ALIP-2, Rmcrit ≈ 1.4 according to calculations and
Rmcrit ≈ 1.3 − 1.4 in the experiments. (2) The 2D model demonstrates good
qualitative and satisfactory quantitative agreement with the experimental results.
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