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Introduction. The goal of this study is the identification of the regions
of stability and instability for the laminar Hartmann flow against transition to
turbulence. In previous work [1] it has been shown numerically that the transi-
tion takes place by a two step mechanism: (1) large transient growth of optimal
2D-perturbations causing a (2) secondary instability against 3D-random pertur-
bation triggering the transition to turbulence. The mechanism leads to a streak
breakdown scenario (see, e.g., [3]). With this two-step mechanism the gap of the
critical Reynolds number between linear stability analysis (RL = 48250, see [4])
and experimental results (150 < RC < 250, see references in [4]) could be closed
satisfactory using direct numerical simulation. We found a critical Reynolds num-
ber of RC = 350 for Ha = 10, 20. This is in good agreement with a recent
experiment [5] giving a critical Reynolds number of RC = 380.

In this contribution we address two additional topics, which extend our for-
mer results to a parametric study: (1) Closure of the gap between the Hartmann
number in the experiment (130 < Ha < 1690) and our numerical calculations
(Ha = 10, 20). (2) Determination of the size of 2D-optimal disturbances and 3D-
random perturbations, which are necessary to trigger transition to turbulence.
This gives an exact representation of the system behaviour in the region of condi-
tional stability.

1. Numerical simulation of the streak breakdown mechanism. We
consider the flow of an electrically conducting fluid between two parallel non-
conducting planes inside a uniform magnetic field normal to the walls. The laminar
solution is the Hartmann profile with two Hartmann layers of thickness δ = L/Ha
at the lower and the upper wall. Here L is the channel width and Ha is the
Hartmann number Ha = B0L

√
σ/(ρν). (B0 is the magnetic field, σ is the electric

conductivity, ρ is the density, ν is the kinematic viscosity).
The non-dimensional formulation of the MHD-equations in the quasistatic ap-

proximation (for details see [1]) is based on the centreline velocity U0, the channel
width L and the size of the applied magnetic field B0 as typical scales. Considering
the incompressible flow, ∇ ·v = 0, the following set of equations has to be solved:

∂v
∂t

+ v · ∇v = −∇p +
1

HaR
∇2v +

Ha

R
[(−∇φ + v × ez) × ez], (1)

∇2φ = ωz. (2)

Here we have used the Reynolds number R, which is based on the thickness of the
Hartmann layer. It is linked to the usual Reynolds number Re = U0L/ν by the
relation R = Re/Ha. The above governing equations are solved in a 3D rectangular
domain with periodic boundary conditions in horizontal directions and no-slip
conditions on upper and bottom walls (vertical direction). The limiting walls are
electrically non-conducting that means that the normal component of the current
density has to be zero. The flow is driven in the streamwise direction with a given
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flow rate. The total current in the spanwise direction integrated over the vertical
direction is fixed to zero. The flow solver, which was originally developped and
applied in [1], implements a pseudo-spectral approximation with a Fourier series
in the horizontal directions and a Chebyshev polynomial expansion in the vertical
direction.

The procedure, which realizes the two-step mechanism numerically, is imple-
mented as follows. The two-step scenario of transition to turbulence implies that
the growth of the 2D-optimal perturbations modifies the flow in such a way that
it becomes unstable against perturbation by small 3D-random noise. Therefore,
there are two phases of the transient process to be modeled separately, namely
(1) the 2D-evolution of the optimal perturbations and (2) fully 3D-flow evolution
after that. The appropriate 2D-optimal perturbations for the Hartmann flow are
streamwise vortices of the size of the Hartmann boundary layer, as was computed
by Gerard-Varet [6]. To trace the 2D flow evolution, the code is modified to work
in a pure 2D mode, which is achieved by setting to zero all non-zero coefficients
of the Fourier expansion in the streamwise direction in each timestep. The sim-
ulations are started with a specified initial amplitude E2D(t = 0) of the optimal
perturbations. The 2D-flow evolves then until the energy E2D(t) attains a max-
imum. At this moment, which is denoted here and after as topt, the 3D random
noise with a given amplitude E3D is imposed on the modulated flow. After that
the procedure of artificial suppression of non-zero Fourier coefficients is switched
off and the code continues to run further with full 3D-functionality engaged.

2. Critical Reynolds number for high Hartmann number. The
first issue of this work is to get numerically the link to the Hartmann numbers
in the experiment of Moresco & Alboussière [5] lying between 130 and 1690. The
critical Reynolds number found in the experiment was RC = 380, independent
on the Hartmann number, which shows that in the experiment the case of an
isolated Hartmann layer is reached. Our previous runs with Ha = 5, 10, 20 all
yielded the same critical Reynolds number of RC = 350. Mainly two questions
from the comparison of experiment and numerics arose at the start of this work:
(1) Does the numerical value change, if one goes to higher values of the Hartmann
number? (2) When is the case of isolated Hartmann layers reached numerically?
The ideal case of isolated Hartmann layers is reached for Ha → ∞. The higher is
the Hartmann number, the thinner are the Hartmann layers and the smaller is the
region of the channel they occupy. At a certain point the both Hartmann layers
do not influence each other and the problem can be considered as for an isolated
Hartmann layer. The critical Reynolds number then should only depend on R (see
[4]).

In figure 1 a systematical check of stability and instability dependent on the
Reynolds number R and the Hartmann number Ha is shown. The black filled
triangles denote that for the corresponding R and Ha no transition to turbulence
was observed with the two-step scenario, independently on how large the 2D-
optimal disturbances and 3D-random perturbations were chosen. Blank triangles
mark the runs, where a transition to turbulence could be found with the two-step
mechanism with a certain choice of 2D- and 3D-perturbations. The results shown
for Ha = 10, 20 were already computed for the previous publication. The critical
Reynolds number is detected in the interval 345 < RC < 350. For the higher
Hartmann numbers, which are considered here, the critical Reynolds number grows
to 360 < RC < 370 for Ha = 40 and 380 < RC < 390 for Ha = 100. This is
closer to the result of the experiment and well closes the gap between numerics
and experiment. As the critical Reynolds number still varies with the Hartmann
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Fig. 1. Critical Reynolds number R vs Hartmann number. Filled triangles mark points (R, Ha)
in the parameter space, where no transition could be detected independent on the size of 2D-
and 3D-perturbations. Empty triangles mark parameter pairs, where a transition by the streak
breakdown scenario could be observed. The numerical value of the critical Reynolds number
approaches the experimental value for Ha=40 and 100 giving a better agreement with reference
[5].

number, the numerical calculations show that the limit of an isolated Hartmann
layer is not yet reached for Ha = 40 and Ha = 100. Because one needs several
runs to enclose the critical Reynolds number for a given Hartmann number, it was
not possible to treat the case of higher Hartmann numbers (the next would have
been Ha = 200) with our computational resources.

3. Necessary size of 2D-optimal and 3D-random perturbations.
The second main topic of this parametric study is the determination of the nec-
essary size of perturbations in the two-step scenario for transition to turbulence.
This was lead through using the streak breakdown scenario as described in Section
2 in the Reynolds number interval R ∈ [350, 1000] for Ha = 10, 15 and 20. Vary-
ing the size of 2D-optimal disturbances and 3D-random perturbations in a wide
range, we filtered out two values for each Reynolds number R: (1) The absolut
minimal necessary 2D-perturbation (independent of the size of 3D-perturbations)
to trigger the transition to turbulence. (2) The minimal 3D-random perturbation
for the given 2D-perturbation that provides a transition to turbulence. The search
for this both values was organized in two loops of runs, the inner loop varying the
3D-perturbation starting from below and the outer loop varying the size of the
2D-optimal disturbation. As it turned out, the necessary minimal perturbations
change only very slightly for the three tested Hartmann number 10, 15 and 20.
This allows to present the result for all three Hartmann numbers in one figure as
shown in Fig. 2.

As one expects, the necessary absolute 2D-perturbations and the correspond-
ing 3D-perturbations decrease with the increasing Reynolds number. The factor
between perturbations at R = 350 and R = 1000 is 10−3 for absolute minimal 2D-
perturbations and even 10−3.5 for the corresponding minimal 3D-perturbations.
This means that already in this interval for the Reynolds number the necessary
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Fig. 2. Minimal sizes of 2D-optimal disturbances and 3D-random perturbations for the transition
to turbulence in dependence on the Reynolds number R based on the Hartmann layer thickness.
As the results for Ha = 5, 10 and 15 are almost identical, the results for these three Hartmann
numbers are summarized by the two curves in this figure.

size of perturbations is decreasing significantly.
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