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The linear instability of MHD Taylor–Couette flows is considered. The magnetic field
destabilizes the rotating flow by the magnetorotational instability (MRI). The latter
exists for hydrodynamically unstable flows only for high enough magnetic Prandtl number
Pm. It is more pronounced for hydrodynamically stable flows. One can always find a
field amplitude, where the characteristic Reynolds number is minimum. In all cases
the minimum magnetic Reynolds number is of the order 10 and the Lundquist number
slightly exceeds unity. The critical Reynolds numbers thus exceed the values of 106 for
sodium and 107 for gallium. The numbers are drastically reduced if an extra toroidal
magnetic field is applied with an amplitude larger than the amplitude of the axial field.

Introduction. The rotation law in the infinite Taylor–Couette flow is
Ω(R) = a + b/R2, where a and b are related to the angular velocities Ωin and
Ωout of the inner and the outer cylinders. With Rin and Rout as the radii of the
cylinders, the parameters µ̂ = Ωout/Ωin and η̂ = Rin/Rout of the flow are defined.
The ideal flow is hydrodynamically stable when µ̂ > η̂2. If the fluid is electrically
conducting and an axial magnetic field is applied, then after the old results the
critical Reynolds number (for the inner rotating cylinder) grows with the grow-
ing magnetic field (Chandrasekhar 1961). Velikhov (1959), however, discovered a
magnetic shear-flow instability, which is now called ‘magnetorotational instabil-
ity’ (MRI). He found that for the ideal hydromagnetic Taylor–Couette flow the
Rayleigh criterion for stability changes to µ̂ > 1 and that

k ≤ 2η̂
Ωin

VA
, (1)

is the critical wave number (VA Alfvén velocity). The MRI reduces the crit-
ical Reynolds number for weak magnetic field strengths for the hydrodynam-
ically unstable flow and it destabilizes the otherwise hydrodynamically stable
flow for η̂2 < µ̂ < 1. As we shall demonstrate, the magnetic Reynolds num-
ber Rm = Re Pm mainly controls the instability. Because of the high value of η
for liquid metals (exceeding 1000 cm2/s), it is not easy to reach magnetic Reynolds
numbers of the required order of 1 . . . 10. This is the basic reason why the MRI
has not yet been observed in the laboratory.

Taylor–Couette flow under the presence of an axial magnetic field.
The Reynolds number is usually defined as Re = Rin(Rout − Rin)Ωin/ν. The
amplitude of the external magnetic field B0 is expressed by the Hartmann num-
ber Ha = B0

√
Rin(Rout − Rin)/(µ0ρνη). Fig. 1 shows the neutral stability for

axisymmetric modes for containers with a resting outer cylinder and for various
magnetic Prandtl numbers. Re = 68 is the classical hydrodynamic solution for
resting outer cylinder and η̂ = 0.5. Note the strong difference of the bifurcation
lines for Pm >∼ 1 (high conductivity) and Pm < 1 (low conductivity). For fluids
with low a electrical conductivity the magnetic field only suppresses the instability
so that all the critical Reynolds numbers strongly exceed the value 68.

The opposite is true for Pm >∼ 1. In Fig. 1 the resulting critical Reynolds num-
bers Re are smaller than 68. The magnetic fields with small Hartmann numbers

http://www.ipul.lv/pamir/ 117
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Fig. 1. Bifurcation diagram for axisymmetric modes with a resting outer cylinder of conducting
material (left) and vacuum (right). Shaded areas denote subcritical excitation by the axial
magnetic field. η̂ = 0.5. From Rüdiger, Schultz & Shalybkov (2003).

support the instability rather than suppress it. This effect becomes more effective
for an increasing Pm but it vanishes for stronger magnetic fields.

Now the outer cylinder may rotate so fast that the rotation law no longer
fulfills the Rayleigh criterion. The nonmagnetic eigenvalue along the vertical axis
moves to infinity but a minimum remains. Fig. 2 presents the results for Pm = 1
and Pm = 10−5 (Rüdiger & Shalybkov 2002). For η̂ = 0.5 and µ̂ = 0.33 the critical
Reynolds numbers together with the critical Hartmann numbers are plotted in
Fig. 3. The general scaling Re ∝ Pm−1 results leading to

Rm � const. S � const. (2)

for the magnetic Reynolds number Rm and the Lundquist number S = Ha
√

Pm.
For hydrodynamically unstable flows the cell has the same vertical extent as it has
in radius. The magnetic field deforms the Taylor vortices elongating the cell in
the vertical direction. The wavenumber is thus expected to become smaller and
smaller for the increasing magnetic field. This is indeed true (Fig. 4).

Fig. 2. Marginal stability lines for axisymmetric modes in containers with a rotating outer
cylinder of conducting material for Pm = 1 (left) and Pm = 10−5 (right). η̂ = 0.5, µ̂ = 0.33.
The instability domain is grey-colored and fluids in the cross-hatched area are always stable.
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MHD Taylor–Couette flow

Fig. 3. The critical Reynolds numbers vs. the magnetic Prandtl numbers marked with those
Hartmann numbers where, the Reynolds number is minimum. η̂ = 0.5, µ̂ = 0.33.

Taylor–Couette flow under the presence of a spiralic magnetic field.
The given solutions of the marginal stability of axisymmetric modes are stationary.
One could ask for the character of the solutions if an extra toroidal magnetic field
is applied (Hollerbach & Rüdiger 2005). We know that the current-free toroidal
fields alone do not change the stability of Taylor–Couette flow (Velikhov 1959). If
axial fields and current-free toroidal fields of the same order exist in the container,
however, completely new solutions appear and they are oscillating (Fig. 5). The

Fig. 4. Wave numbers, for which the Reynolds number is minimum for conducting walls and
insulating walls. (Pm = 10−5, Rüdiger & Shalybkov 2002).
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Fig. 5. Critical Reynolds numbers in containers (η̂ = 0.5) with a purely axial magnetic field
(upper curves) and with an extra toroidal field (lower curves) for Pm = 10−5 (sodium) and
Pm = 10−6 (gallium). The cylinders are insulators. The Prandtl number dependence of the
lower curves is extremely weak and the Reynolds numbers are strongly reduced (Hollerbach &
Rüdiger 2005).

real parts of the eigenfrequencies are positive so that stationary modes do not
longer exist. The Reynolds number of the flow and the Hartmann number of the
axial field, which are necessary to induce the MRI instability, are reduced by orders
of magnitude by the toroidal field compared to the case of purely axial fields. In
such experiments the toroidal magnetic field can be produced by axial currents
within the inner cylinder. The amplitude of the currents is of the order of 103 A.
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