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Introduction. In geodynamo computer simulations up to date necessary
supposition for their tractability was consideration of greater values for viscos-
ity and thermal diffusivity than the values based on transport phenomena at the
molecular level in the Earth’s core. The smallest diffusive coefficients appropriate
for simulations are still two order greater than the corresponding values at the sup-
posed turbulent state of the core. However, the simulation results are surprisingly
in good agreement with the geomagnetic field and its secular variations.

Accepting the turbulence in the Earth’s core, we have to consider simultane-
ously the diffusive coefficients of rather tensor quantities than scalar ones, due to
turbulent eddies in the core. In meteorology it is necessary to consider turbulent
viscosity and thermal diffusivity for the air which are 2-3 orders greater than the
molecular values. Furthermore, the values in horizontal directions are negligible
in comparison with turbulent diffusivities in vertical direction. It is opposite in
surface ocean waters. In the Earth’s core at the dominant role of magnetic force,
it is more complex and the analogies with ocean or atmosphere are the only good
approximations. The approximations are important in order that the complex
problem in the first heuristic step of solution could be mathematically tractable.

Investigation of rotating magnetoconvection problems show that at the so-
called diffusive instabilities various types of diffusive processes play an important
unreplaceable active role. At basic balance of forces, namely, magnetic, Coriolis
and buoyancy forces, individual diffusive processes strongly weaken at least one of
the above mentioned forces in dependence on running mechanisms. It allows to
develop various instabilities of basic state in the framework of many possibilities
of competing diffusive processes. In rotating magnetoconvection, the magnetic
diffusion weakens the magnetic forces and thermal diffusion and viscosity weaken
buoyancy and the Coriolis force, respectively. The greater amount of diffusive
processes, the more complex the set of phenomena in the system.

Obviously, it is necessary to consider the influence of the anisotropy of diffusive
coefficients in the studies of the rotating magnetoconvection in the Earth’s core.
Our attention is focused on such types of anisotropy which enable us to find
solutions in a separable form. Diffusive coefficients will be isotropic in horizontal
directions. There will be a difference in their values in horizontal directions and
in the vertical direction. By analogy with surface ocean waters and the lower
atmosphere the diffusive coefficients in horizontal directions are much greater or
smaller than in the vertical direction, respectively.

The analogy with the atmosphere can be a rough approximation to the re-
sults of the Earth’s core turbulence study by [3]. The arising turbulence, strongly
influenced by magnetic and Coriolis forces, corresponds to eddies of pancake form
stretched in the z- and ϕ-directions (rotation axis and magnetic field) and it is thin
in the s-direction (perpendicular to the axis of rotation). It gives, e.g., thermal
diffusivities κzz ∼ κϕϕ � κss instead of a-anisotropy, κzz � κϕϕ = κss, inves-
tigated by us. The ocean type o-anisotropy, κzz � κϕϕ = κss, corresponds to
a stably stratified sublayer of the Earth’s core at the boundary with the mantle.
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Just instabilities in this sublayer can well correspond to various secular variations,
because the fluctuating magnetic fields with shorter time periods and from deeper
depths cannot manifest themselves at the Earth’s surface.

We compare our anisotropic studies, a- and o-anisotropies, with two isotropic
cases – determined and non-determined by turbulence.

1. Model and method of solution. A rotating horizontal fluid layer of
thickness d is stratified due to a temperature difference ∆T between the bottom
and the top and is permeated by an azimuthal magnetic field linearly growing
with a distance s from the vertical z-axis of rotation. Thus the basic state of the
considered model is U0 = 0, B0 = BM (s/d)ϕ̂, T0 = Tl − (∆T/d)(z + d/2), where
U0 is the velocity, B0 is the magnetic field, and T0(z) is the vertical temperature
profile in the layer [1]. The diffusive coefficients are determined or non-determined
by turbulence. In the latter case, e.g., anisotropic thermal diffusion is in cylindrical
geometry determined by three coefficients κss, κϕϕ, and κzz in the sense ∇·(κ·ϑ̃) =

∇ ·
(
κzz∂zϑ̃ ẑ + κss∂sϑ̃ ŝ + κϕϕs−1∂ϕϑ̃ ϕ̂

)
. At isotropic turbulence κss = κϕϕ =

κzz = κ = O(η) and νss = νϕϕ = νzz = ν, where η and ν are the magnetic
diffusivity and kinematic viscosity coefficients, respectively.

Perturbations are of infinitely small amplitude, therefore, their basic equations
can be linearized and in the dimensionless form are

ẑ×u = −∇p+Λ [(∇× sϕ̂) × b + (∇× b) × sϕ̂]+Rϑ̃ẑ+Ez

[
(1 − αv)∂zz + αv∇2

]
u

∂tb = ∇× (u × sϕ̂) + ∇2b, q−1
z ∂tϑ̃ = ẑ · u +

[
(1 − αϑ) ∂zz + αϑ∇2

]
ϑ̃,

∇ · u = 0, ∇ · b = 0.

The dimensionless parameters used in these equations are (if g, αT , and Ω0 are,
respectively, acceleration due to gravity, thermal expansion coefficient, and an-
gular velocity): the modified Rayleigh number R = (gαT ∆Td)/(2Ω0κzz), Ek-
man numbers Ez = νzz/(2Ω0d

2), Es = νss/(2Ω0d
2), the Elsasser number Λ =

B2
M/(2Ω0µρ0η), Roberts numbers qz = κzz/η, qs = κss/η, anisotropic parameters

αϑ = κss/κzz = qs/qz, αv = νss/νzz = Es/Ez. In a- and o-anisotropies we have
horizontal isotropies, i.e., κss = κϕϕ and νss = νϕϕ.

It is reasonable in MAC modes study to distinguish cases when only thermal
diffusivity is anisotropic (αv = 1 and αϑ �= 1), and when both viscosity and thermal
diffusivity are anisotropic (αv �= 1 and αϑ �= 1). The high electric conductivity of
the Earth’s core makes the magnetic diffusivity isotropic in all investigated cases.

Velocity and magnetic field perturbations, u and b, are split into poloidal
and toroidal parts u = k−2[∇ × (∇ × w̃ẑ) + ∇ × ω̃ẑ] and b = k−2[∇ × (∇ ×
b̃ẑ) + ∇ × j̃ẑ] with w̃, ω̃ representing the perturbation u, b̃, j̃ the perturbation
b, and the temperature perturbation ϑ̃. All perturbations (w̃, ω̃, b̃, j̃ and ϑ̃) have
the form of waves propagating in azimuthal direction and warranting the sepa-
rability of solutions f̃(z, s, ϕ, t) = �e[f(z)Jm(ks)exp(imϕ + λt)], where f(z) =
w(z), ω(z), b(z), j(z), ϑ(z), and Jm(ks) is the Bessel function of the 1st kind. For
the functions f(z) we have the set of ordinary differential equations, which is re-
formulated to eigenvalue problem with the Rayleigh number, R, as an eigenvalue.
We consider mechanically the boundary stress free and electromagnetically perfect
conductors.

2. Numerical results and conclusions. We present numerical results
in four subfigures in Fig. 1, firstly three sets of graphs (a), (c), (d) for critical
numbers Rc, kc and σc versus the Elsasser number Λ for four cases of anisotropies
or isotropies in each figure (o- and a- anisotropy, and isotropies with the Roberts
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number q ∼ 1 and q � 1, respectively). In these three sets of graphs only a single
azimuthal wave number, m = 1, is with single vertical wave number l = 1. In the
4th set of graphs (b) Rc vs Λ is for various azimuthal wave numbers, m = 1, 2, 5
and 30, in the case of o-anisotropy. In all figures the curves Rc(Λ), kc(Λ) and σc(Λ)
correspond to the preferred modes (with exception of MC modes with Rayleigh
numbers, R = 0, which with corresponding k and σ are not critical Rc, kc and
σc, in the o-anisotropy case for Λ∼> 2000). Discontinuities in the curves (in the
0th, 1st and 2nd derivation with respect to Λ) just correspond to the changes of
preference among competing modes.

At the lower Λ there is an obvious transition of preference between a “viscous
mode” and a hydromagnetic, mode which becomes the preferred mode for greater
Λ. (The name“viscous modes” is related to their non-existence in inviscid fluid.)
It holds Rc(Λ) � cR, kc(Λ) � ck and σc � cσΛ for viscous modes, where the
coefficients cR, ck and cσ are independent on Λ, but are variously dependent on
other parameters, e.g., Ekman and Roberts numbers or anisotropy parameters, αv

and αϑ, represented by α if αv = αϑ.
The mechanisms of the hydromagnetic modes development are various and

with the magnetic force being important they (in particular, diffusive instabili-
ties) sensitively depend on diffusive processes, and consequently on various cases
of diffusive coefficient anisotropy. We can easily distinguish thermal modes and
magnetically driven modes, e.g., MAC and MC modes at Λ∼> 0.3 and Λ∼> 2000, re-
spectively, for isotropic cases q ∼ 1. Due to the importance of additional magnetic
diffusion at hydromagnetic modes developement, all curves in the graphs are more

Fig. 1. (a), (c), (d) Critical numbers Rc, kc and σc versus the Elsasser number, Λ, for various
cases of anisotropy and isotropy of diffusive coefficients; (a) Rayleigh number, Rc, (c) radial wave
number, kc, (d) frequency, σc; (b) critical Rayleigh number, Rc, versus Λ for various azimuthal
wave numbers, m = 1, 2, 5 and 30 in the o-anisotropy case of diffusive coefficients.
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complex for greater Λ. Transition from the “viscous mode” to the hydromagnetic
mode at Λ being dependent sensitively on the anisotropy parameter α and the
azimuthal wave number m is manifested by jumps in values of kc and σc, and by
the change of behaviour quality for Rc(Λ), i.e., from the constant Rc value of the
“viscous mode” to the curve of parabolic shape.

Referring to the dependence of the modes on anisotropy, it is evident from
the graphs that a-anisotropy facilitates the convection because it decreases the
values of Rc both for viscous and for hydromagnetic modes. Further, the greater
a-anisotropy, i.e., α � 1, the smaller Rc value. Similarly, a-anisotropy increases kc

values and more intensively for a greater a-anisotropy, i.e., it makes the convection
cells shorter in the s-direstion. Likewise, the greater a-anisotropy causes an in-
crease of the preference region of viscous modes to greater Λ, thus with transition
from viscous to hydromagnetic modes at greater Λ. In contrast to the a-anisotropy,
the o-anisotropy embarrasses the convection because the Rc values are greater for
a greater o-anisotropy (α � 1). Critical radial wave numbers, kc, decrease with
the increase of the o-anisotropy; the convection cells are greater in the s-direction.
The transition of viscous into hydromagnetic mode is shifted to smaller Λ for
the greater o-anisotropy. The case of o-anisotropy gives two obvious examples of
transition between various hydromagnetic modes at greater Λ = O(1000). First,
there is a transition at Λ ∼ 500 into a mode with smaller σc. Second, transition
at Λ ∼ 2000, which is not in the a-anisotropy, is the transition of MAC into the
MC mode. The Rayleigh number, Rc, of the MAC mode at Λ ∼ 2000 strongly
decreases with Λ, reaching negative values only for m = 1. Thus Rc = 0 is the be-
ginning of the MC mode existence, which do exist at zero Rayleigh number, R = 0,
for greater amount (but limited) of vertical wave numbers, l. These MC modes at
the o-anisotropy, propagating only westwards, are the diffusive instabilities sim-
ilar to the MC(W) wave type instabilities [2] in the turbulent isotropic case (of
Roberts number q ∼ 1). However, in the o-anisotropy case they need no too high
values of the Ekman number, E = O(10−3), and the anisotropic Ekman number
values are Ez = O(10−7) and Es = O(10−5), which are much closer to the realistic
Earth’s core Ekman number, E = O(10−9), based on turbulent viscosity. Despite
the fact that the existence condition of the MC(W) modes requires greater Λ for
smaller Ekman numbers as well as in the isotropic case, in the o-anisotropy case
the values of Λ are again more realistic, e.g., the MC(W) modes arise at Λ ∼ 100
and Es ∼ 102Ez ∼ 10−3 in comparison with the isotropic case, where EΛ∼> 1 with
e.g. E = O(10−3) and Λ = O(103). Further the MAC mode bifurcates into two
MC(W) modes as is evident from Fig. 1c,d.
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